|
|
Research interests
Selected publications
White, RP and Meirovitch, H. Free volume hypothetical scanning molecular dynamics method for the absolute free energy of liquids, J. Chem. Phys. 124, 204108 (2006) (.pdf)
Cheluvaraja S, Meirovitch H. Calculation of the entropy and free energy of peptides by molecular dynamics simulations using the hypothetical scanning molecular dynamics method, J. Chem. Phys. 124, 1 (2006) (.pdf)
White, RP and Meirovitch, H. Minimalist Explicit Solvation Models for Surface Loops in Proteins, Journal of Chem. Theory and Comput. (In press) (.pdf)
Cheluvaraja S, Meirovitch H. Calculation of the entropy and free energy from Monte Carlo simulations of a peptide stretched by an external force. J. Phys. Chem. B. 2005:109; p.21963-21970. (.pdf)
White RP, Funt J, Meirovitch H. Calculation of the entropy of lattice polymer models from Monte Carlo trajectories. Chemical Physics Letters 410 (2005) 430–435. (.pdf)
Cheluvaraja S, Meirovitch H. Calculation of the entropy and free energy by the hypothetical scanning Monte Carlo Method: Application to peptides. J. Chem. Phys. 2005:122; 54903-54914 (.pdf)
White RP, Meirovitch H. Lower and upper bounds for the absolute free energy by the hypothetical scanning Monte Carlo method: Application to liquid argon and water. J. Chem. Phys. 2004:121; 10889-10904 (.pdf)
Miao J, Klein-Seetharamanan J, Meirovitch H. The optimal fraction of hydrophobic residues required to ensure protein collapse. J. Mol. Biol. 2004:344: 797-811. (.pdf)
Cheluvaraja S, Meirovitch H. Simulation method for calculating the entropy and free energy of peptides and proteins. Proc. Natl. Acad. Sci. USA 2004:101;9241-9246. (.pdf)
White RP, Meirovitch H. A simulation method for calculating the Absolute entropy and free energy of fluids: Application to liquid argon and water. Proc. Natl. Acad. Sci. USA 2004:101; 9235-9240. (.pdf)
White RP, Meirovitch H. Absolute entropy and free energy of fluids using the hypothetical scanning method.. II. Transition Probabilities from Canonical Monte Carlo Simulations of Partial Systems. J. Chem. Phys. 2003: 119; 12096-12105. (.pdf)
Szarecka A, White RP, Meirovitch H. Absolute entropy and free energy of fluids using the hypothetical scanning method. I. Calculation of transition probabilities from local grand canonical partition functions. J. Chem. Phys. 2003: 119; 12084-12095. (.pdf)
Ozkan BS, Meirovitch H. Conformational search of peptides and proteins: Monte Carlo minimization with an adaptive bias method applied to the heptapeptide deltorphin. J. Comput. Chem. 2004: 25; 565-572. (.pdf)
Das B, Meirovitch H, Navon IM. Performance of hybrid methods for large-scale unconstrained optimization as applied to models of proteins. J. Comput. Chem. 2003: 24;1222-1231. (.pdf)
Ozkan BS, Meirovitch H. Efficient conformational search method for peptides and proteins: Monte Carlo minimization with an Adaptive bias. J. Phys. Chem. B. 2003: 107; p. 9128-9131. (.pdf)
Das B, Meirovitch H. Solvation parameters for predicting the structure of surface loops in proteins: Transferability and entropic effects. Proteins 2003:51;470-483. (.pdf)
Yasar F, Arkin H, Celik T, Berg BA, Meirovitch H. Efficiency of the multicanonical simulation method as applied to peptides of increasing size: The heptapeptide deltorphin. J. Comput. Chem. 2002:23;1127-1134. (.pdf)
Meirovitch H. Polymer collapse, protein folding and the percolation threshold. J. Comput. Chem. 2002; 23:166-171. (.pdf)
Das B, Meirovitch H. Optimization of solvation models for predicting the structure of surface loops in proteins. Proteins: Structure, Function, and Genetics Volume 43, Issue 3 , Pages 303 - 314. (.pdf)
Meirovitch H, Meirovitch E. Efficiency of Monte Carlo Minimization Procedures and Their Use in the Analysis of NMR Data Obtained from Flexible Peptides. J. Comput. Chem., 18, 240-253 (1997).
Baysal C, Meirovitch H. Efficiency of the Local Torsional Deformations Method for Identifying the Stable Structures of Cyclic Molecules. J. Phys. Chem. A, 101, 2185-2191 (1997). [abstract]
Baysal C, Meirovitch H. New Conformational Search Method Based on Local Torsional Deformations for Cyclic Molecules, Loops in Proteins, and Dense Polymer Systems. J. Chem. Phys., 105, 7868-7871 (1996). [abstract]
Meirovitch H, Meirovitch E. New Theoretical Methodology for Elucidating the Solution Structure of Peptides from NMR Data. 3. Solvation Effects. J. Phys. Chem., 100, 5123-5133 (1996).
Meirovitch E, Meirovitch H. New Theoretical Methodology for Elucidating the Solution Structure of Peptides from NMR Data. 2. Free Energy of Dominant Microstates of Leu-Enkephalin and Population-Weighted Average Nuclear Overhauser Effects. Biopolymers, 38, 69-88 (1996).
Meirovitch H, Meirovitch E, Lee J. New Theoretical Methodology for Elucidating the Solution Structure of Peptides from NMR Data. 1. The Relative Contribution of Low-Energy Microstates to the Partition Function. J. Phys. Chem., 99, 4847-4854 (1995).
Meirovitch H, Koerber SC, Rivier JE, Hagler AT. Computer Simulation of the Free Energy of Peptides with the Local States Method: Analogues of Gonadotropin Releasing Hormone in the Random Coil and Stable States. Biopolymers, 34, 815-839 (1994).
Meirovitch H, Kitson DH, Hagler AT. Computer Simulation of the Entropy of Polypeptides Using the Local States Method: Application to Cyclo-(Ala-Pro-D-Phe)2 in Vacuum and in the Crystal. J. Am. Chem. Soc., 114, 5386-5399 (1992).
Meirovitch H. Entropy, Pressure, and Chemical Potential of Multiple Chain Systems from Computer Simulation. II. Application of the Metropolis and the Hypothetical Scanning Methods. J. Chem. Phys., 97, 5816-5823 (1992).
Meirovitch H. Entropy, Pressure, and Chemical Potential of Multiple Chain Systems from Computer Simulation. I. Application of the Scanning Method. J. Chem. Phys., 97, 5803-5815 (1992).
Current group members
Last modified: January 18, 2006