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Calculation of the entropy and free energy of peptides by molecular
dynamics simulations using the hypothetical scanning molecular
dynamics method

Srinath Cheluvaraja and Hagai Meirovitcha�

Department of Computational Biology, University of Pittsburgh School of Medicine, 3059 BST3, Pittsburgh,
Pennsylvania 15260

�Received 6 March 2006; accepted 5 May 2006�

Hypothetical scanning �HS� is a method for calculating the absolute entropy S and free energy F
from a sample generated by any simulation technique. With this approach each sample configuration
is reconstructed with the help of transition probabilities �TPs� and their product leads to the
configuration’s probability, hence to the entropy. Recently a new way for calculating the TPs by
Monte Carlo �MC� simulations has been suggested, where all system interactions are taken into
account. Therefore, this method—called HSMC—is in principle exact where the only
approximation is due to insufficient sampling. HSMC has been applied very successfully to liquid
argon, TIP3P water, self-avoiding walks on a lattice, and peptides. Because molecular dynamics
�MD� is considered to be significantly more efficient than MC for a compact polymer chain, in this
paper HSMC is extended to MD simulations as applied to peptides. Like before, we study
decaglycine in vacuum but for the first time also a peptide with side chains, �Val�2�Gly�6�Val�2. The
transition from MC to MD requires implementing essential changes in the reconstruction process of
HSMD. Results are calculated for three microstates, helix, extended, and hairpin. HSMD leads to
very stable differences in entropy T�S between these microstates with small errors of
0.1–0.2 kcal/mol �T=100 K� for a wide range of calculation parameters with extremely high
efficiency. Various aspects of HSMD and plans for future work are discussed. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2208608�
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YI. INTRODUCTION

Calculation of the entropy S and Helmholtz free energy
F �F=E−TS, where E is the potential energy and T is the
absolute temperature� is of central interest in physics, chem-
istry, engineering, and biology.1–5 S is an essential thermody-
namic property that constitutes a measure of order and is the
main driving force in protein folding. The usual thermody-
namic properties such as the pressure and the chemical po-
tential can be derived from F,6 which also serves as a crite-
rion of stability, the lower is F the higher the stability; this is,
in particular, important in structural biology. The potential
energy surface of peptides and proteins is rugged, i.e., “deco-
rated” by a tremendous number of localized wells and
“wider” ones, which are defined over regions �m called
microstates—each consists of many localized wells. A mi-
crostate can be obtained computationally by the local mo-
lecular dynamics7,8 �MD� fluctuations around a structure
�such as an � helix or a hairpin of a peptide�. MD studies
have shown that a molecule will visit a localized well only
for a very short time �several femtaseconds� while staying
for a much longer time within a microstate,9,10 meaning that
the microstates are of a greater physical significance than the
localized wells. Thus, the aim of protein folding, for ex-
ample, is to find the most stable microstate, i.e., that with
lowest Fm.

a�Author to whom correspondence should be addressed. Electronic
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However, flexible protein segments �e.g., surface loops�,
cyclic peptides, ligands bound to proteins, or side chains, can
undergo intermediate flexibility, where they populate signifi-
cantly several microstates m in thermodynamic equilibrium.
These populations pm are proportional to exp�−Fm /kBT�,
where Fm=−kBT ln Zm=−kBT ln�m exp�−E /kBT�dx, and Zm

is the conformational partition function integrated over the
microstate �m. It is of interest to know whether the confor-
mational change adopted by a loop �a side chain, ligand, etc.�
upon binding has been induced by the other protein �induced
fit11,12� or alternatively the free loop interconverts among dif-
ferent microstates where one of them has been selected upon
binding �selected fit13�; this analysis requires calculating pm,
which is also needed for a correct analysis of NMR and x-ray
data of macromolecules. Finally, the free energy determines
the binding affinities of ligands interacting with active sites
of enzymes, protein-protein interactions, and it is an impor-
tant factor in enzymatic reactions.

While calculation of the absolute F is difficult �due to
the need to know the value of the sampling probability�, in
most cases �and in the examples discussed above� one is
mostly interested in the ratio of populations pn / pm

=exp− ��Fmn /kBT� between two microstates m and n, which
can be calculated in the most straightforward way by a
counting method, i.e., from a long MD or Monte Carlo14

�MC�
simulation that “covers” both microstates. Thus, �Fmn
=−kBT ln��#m� / �#n��, where #m�#n� is the population, i.e., 78
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the number of times the molecule visited microstate m�n�
during the simulation. Notice, however, that because of high
energy barriers, the transition between microstates at room
temperature might require long times, nanoseconds or more
even for side chain rotamers, meaning that reliable sampling
of #m�#n� might become prohibitive. This problem can be
alleviated by applying enhanced sampling techniques such as
replica exchange15 or multicanonical methods16,17 �usually
with principal component analysis�; however, the conforma-
tional search capability of these methods is also limited and
microstates of interest might be visited poorly or will not be
visited at all.

Differences �S and �F are commonly calculated by
thermodynamic integration �TI� over physical quantities such
as the energy, temperature, and the specific heat,18,19 as well
as nonphysical parameters1–5,20–27 �free energy perturbation
methods, umbrella, and histogram analysis methods28–30 are
also included in this category�. While this is a robust ap-
proach, if the structural variance of m and n is large �e.g.,
helical and hairpin states of a polypeptide� the integration
from m to n becomes difficult and in many cases unfeasible.

Developing methods for calculating the absolute F
would remedy this problem to a large extent. Thus, one can
carry out two separate long MD simulations of microstates m
and n and calculating directly the absolute Fm and Fn and
their difference �Fmn=Fm−Fn with high accuracy. Still, the
absolute F can also be obtained with TI provided that a ref-
erence state r is available, where the free energy is known
exactly and an efficient integration path between r and m
�and n� can be defined. A classic example is the calculation
of F of liquid argon or water by integrating the free energy
from an ideal gas reference state.31,32 However, for nonho-
mogeneous systems such integration might not be trivial, and
in models of peptides and proteins defining reference states
that are close to the state of interest is a standing
problem.33–35 Furthermore, because MC �MD� simulations
constitute models for dynamical processes, one would seek
to calculate changes in F and S during a relaxation process,
by assuming local equilibrium in certain parts along the tra-
jectory; a classic example is simulation of protein folding.36

Again, such information cannot be obtained by thermody-
namic integration, and methods that estimate S and F directly
from the trajectory of interest should be developed.

From the statistical mechanics point of view the absolute
entropy �which leads to the absolute F� is related to the Bolt-
zmann probability of system configuration i S�−ln Pi

B.
However, the value of Pi

B cannot be obtained in a straight-
forward manner from a MC or MD trajectory, therefore it has
been commonly represented by a Gaussian37–39 or a quasi-
harmonic approximation.40,41

Another approach for estimating the value of the sam-
pling probability Pi

B from a given sample has been suggested
by Meirovitch. Two related techniques, the local states �LS�
method42–46 and the hypothetical scanning �HS�
method,31,47–50 were developed and applied to magnetic sys-
tems, polymers, fluids, and peptides. With this approach each
sample configuration is reconstructed with the help of tran-
sition probabilities �TPs� and their product leads to the con-
PY 513623JCP  

figuration’s probability, hence to the entropy. Recently the
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HS has been further developed to a method called
HSMC,32,51 where the transition probabilities are calculated
by MC simulations. HSMC takes into account all system
interactions �i.e., short as well as long-range� and in this
respect can be considered to be exact; the only approxima-
tion is due to insufficient MC sampling for calculating the
TPs. This method provides rigorous upper and lower bounds
for F, and F can be obtained from a very small sample, even
from a single conformation.

HSMC is a general technique that has been applied thus
far very successfully to liquid argon,32,51,52 TIP3P water,51,52

peptides,53–55 and self-avoiding walks on a lattice.56,57 In par-
ticular, in Refs. 53 and 54 two models of polyglycine mol-
ecules of 10 and 16 residues, described by the AMBER force
field58 in vacuum were studied. One model is based on con-
stant bond lengths and bond angles �the rigid model� and the
other consists only of constant bond lengths �called there the
flexible model�. These models were simulated by MC in a
helical, hairpin, and extended states and the corresponding
Fm and Sm were calculated leading to very accurate results
for �Fm,n=Fm−Fn ��Sm,n�, which are significantly better
than those obtained with the LS and the quasiharmonic meth-
ods. In a subsequent paper55 HSMC was applied to a model
of decaglycine which is stretched by an external force.

With HSMC applied to a peptide, S is calculated from a
given MC sample by reconstructing each peptide conforma-
tion i step by step, i.e., calculating successively a TP for each
dihedral and bond angle along the chain and fixing the re-
lated atoms at their positions at i. Thus, at each step the
chain’s coordinates that have already been determined are
kept fixed �the “frozen past”� and the TP is obtained from a
MC simulation of the “future” part of the chain whose TPs as
yet have not been determined. It is important to verify that
the simulated future part remains within the original mi-
crostate.

It is desirable to extend HSMC also to MD simulations.
MD provides a model for dynamics and is considered to be a
significantly more efficient method than MC for a compact
polymer chain �notice, however, that Jorgensen and co-
workers have been simulating protein-water systems effi-
ciently with a MC procedure based on local conformational
moves �e.g., see Refs. 59 and 60 and references cited
therein��; correspondingly, Hu et al. have shown recently that
such procedures can be more efficient than MD at least for
small peptides61�. Thus, in this paper we extend HSMC to
MD, where an essential part of the HSMD design is devoted
for “harnessing” the simulated future chains to remain within
the original microstate. HSMD is applied to decaglycine
�Gly�10 in the helix, extended, and hairpin microstates and
the results are compared to those obtained with HSMC for
the “flexible model” in our Ref. 54 �Table VI�, which will be
called Paper I throughout this article; also, to distinguish
between the present �completely� flexible model of �Gly�10

and the �partially� flexible model studied in Paper I �which is
based on constant bond lengths� we call the latter “the flex-
ible model I.” We also study for the first time a peptide with
side chains—�Val�2�Gly�6�Val�2 in the helix and hairpin mi-

crostates. 195
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II. THEORY AND METHODOLOGY

A. The peptides studied

We study two peptides, decaglycine NH2�Gly�10CONH2

and NH2�Val�2�Gly�6�Val�2CONH2, in vacuum defined by
the AMBER96 force field,58 where the charges of the end
groups are neutralized. These models are simulated by MD
in the helix, hairpin, and extended microstates. However,
HSMC �as well as LS or the quasiharmonic method� is
implemented naturally in internal coordinates; therefore the
simulated conformations should be transferred from Carte-
sians to the dihedral angles �i, �i, and �i and the bond angles
�i,l �i=1, N=10, l=1,3�; for the second molecule we also
consider the four side chain angles �k of the four valine
residues �in the next section we argue that to a good approxi-
mation bond stretching can be ignored�. For convenience,
these angles �ordered along the backbone� are denoted by �k,
k=1, 60 �64�.

B. Statistical mechanics of a peptide in internal
coordinates

The partition function of a peptide Z is an integral over
the function exp�−E /kBT� �E is the potential energy and kB is
the Boltzmann constant� with respect to the Cartesian coor-
dinates over the stable microstate �0 �e.g., a helical region�.
As has already been pointed out, to apply HSMC�D� one has
to change the variables of integration from Cartesian to in-
ternal coordinates, which makes the integral dependent also
on a Jacobian J. For a linear chain J has been shown to be
independent of the dihedral angles and it is a simple function
of the bond angles and bond lengths.37,38,40 For decaglycine
the transformation from Cartesian to the internal coordinates,
�k, k=1, 6N=60 is applied under the assumption that the
potentials of the bond lengths �“the hard variables”� are
strong and therefore their average values can be assigned to
J, which to a good approximation can be taken out of the
integral �however, see a later discussion�. For the same rea-
son one can carry out the integration over the bond lengths
�assuming that they are not correlations with the �k� and the
remaining integral becomes a function of the 6N dihedral
and bond angles ��k� �Refs. 37, 38, and 40� and a Jacobian
that depends only on the bond angles. The partition function
becomes

Z� = DZ = D�
�0

exp�− �E���k���/kBT	d�1 ¯ d�6N, �1�

where ��k�= ��1 , . . . ,�6N�. D is a product of the integral over
the bond lengths and their Jacobian J. The Jacobian
�	k sin��k�� of the bond angles �k that should appear under
the integral is omitted for simplicity. We assume D to be the
same �i.e., constant� for different microstates and therefore
ln D cancels and can be ignored in calculations of free en-
ergy and entropy differences. The Boltzmann probability
density corresponding to Z �Eq. �1�� is


B���k�� = exp�− �E���k���/kBT	/Z , �2�

and the exact entropy S and exact free energy F �defined up
PY 513623JCP  

to an additive constant� are
513623JCP  

S = − kB�
�0


B���k��ln 
B���k��d�1 ¯ �6N �3�

and

F = �
�0


B���k���E���k�� + kBT ln 
B���k���d�1 ¯ �6N.

�4�

As discussed earlier in applications of HS, LS, and HSMC,
the fluctuation of the exact F is zero,62 because the integrand,
E���k��+kBT ln 
B���k��=−kT ln Z=F, is constant and equal
to F for any set ��k�. This means that the free energy can be
obtained from any single conformation if its Boltzmann
probability density is known. Using the HSMC�D� method, it
is possible to estimate the free energy of the system from any
single structure. Notice that the fluctuation of an approximate
free energy �i.e., based on an approximate probability den-
sity� is finite and it is expected to decrease as the approxi-
mation improves.31,32,49,50,52,53,62

It should be pointed out that in our previous implemen-
tation of HSMC the peptides were modeled by internal co-
ordinates �rather than Cartesian coordinates� where the bond
lengths were kept constant, and thus the energy and entropy
of bond stretching were ignored �correspondingly, the MC
variables were the dihedral and bond angles�. With MD on
the other hand, the bond stretching energy is taken into ac-
count in Eq. �4� �and in free energy functionals defined later�
while the corresponding entropy is ignored. The contribution
of this energy to the free energy becomes an additive con-
stant if one accepts the assumptions about the stretching en-
ergy and the corresponding Jacobian made prior to Eq. �4�.
This is a very good approximation; however, if the bond
stretching entropy should be considered, we argue later that
it can be estimated approximately within the framework of
HSMD by assuming that bond stretching is independent of
the other interactions.

C. Exact scanning procedure

The HSMC�D� method is based on the ideas of the exact
scanning method, which is a step-by-step construction pro-
cedure for a peptide.63,64 Thus, an N-residue conformation of
polyglycine in the helical region ��0�, for example, is built
�using internal coordinates� by defining the angles �k step by
step with TPs and adding the related atoms;64 for example,
the angle � determines the coordinates of the two hydrogens
connected to C�, and the position of C�. Thus, at step k, k
−1 angles �1 , . . . ,�k−1 have already been determined; these
angles and the related structure �the past� are kept constant,
and �k is defined with the exact TP density 
��k 
�k−1 . . .�1�,


��k
�k−1 ¯ �1�

= Zfuture��k ¯ �1�/�Zfuture��k−1 ¯ �1�d�k� , �5�

where d�k is a small segment centered at �k and
Zfuture��k . . .�1� is a future partition function defined over the
helical region �0 by integrating over the future conforma-
tions defined by �k+1 . . .d�6N �within �0� where the past

angles, �1 . . .�k, are held fixed, 298
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Zfuture��k, . . . ,�1�

= �
�0

exp − ��E��6N, . . . ,�1�/kBT��d�k+1 ¯ d�6N. �6�

The product of the TPs �Eq. �5�� leads to the probability
density of the entire conformation �Eq. �2��,


B��6N, . . . ,�1� = �
k=1

6N


��k
�k−1 ¯ �1� . �7�

This construction procedure is not feasible for a large mol-
ecule and in practice can be carried out by scanning only a
limited number of future angles;63,64 however, the ideas of
the exact scanning method constitute the basis for
HSMC�D�, as discussed below.

Thus, the exact scanning method is equivalent to MC
and MD in the sense that large samples generated by all
these methods lead to the same averages and fluctuations
within the statistical errors. Therefore, one can assume that a
given MC or MD sample has rather been generated by the
exact scanning method, which enables one to reconstruct
each conformation by calculating the TP densities that hypo-
thetically were used to create it step by step. This idea has
been implemented initially in two different ways, by the LS
and HS methods. However, an exact reconstruction of the
TPs �Eq. �5�� is feasible only for a very small peptide. There-
fore, calculation of future partition functions �Eq. �6�� by
these methods has been carried out only approximately, by
considering a partial future �or a limited past in the case of
LS�. As will be described later, with HSMC�D� the entire
future is considered and in this respect the method can be
considered to be exact.

D. The HSMC method in internal coordinates

It would be beneficial to describe first the HSMC
method in internal coordinates that has been developed in
previous publications. In the first step the MC sample to be
analyzed �of a given microstate� is visited and the variability
range ��k is calculated, where �k are the dihedral and bond
angles, 1��k�6N,

��k = �k�max� − �k�min� , �8�

where �k�max� and �k�min� are the maximum and minimum
values of �k found in the sample, respectively. ��k, �k�max�,
and �k�min� enable one to verify that the sample spans cor-
rectly its microstate and they help keeping the future chains
within the limits of the microstate during the MC simulations
as discussed below.

As mentioned in Sec. II C, the idea of the HS method is
to reconstruct each sample conformation step by step obtain-
ing the TP density of each �k �Eq. �5�� by calculating the
future partition functions Zfuture �Eq. �6��. However, a sys-
tematic integration of Zfuture based on the entire future within
the limits of �0 is difficult and becomes impractical for a
large peptide where �0 is unknown. The idea of the HSMC
method is to obtain the TPs �Eq. �5�� by carrying out MC
simulations of the future part of the chain rather than by
evaluating the integrals defining Zfuture �Eq. �6�� in a system-
PY 513623JCP  

atic deterministic way. Thus, at reconstruction step k of con-
513623JCP  

formation i the TP density, 
��k 
�k−1 . . .�1�, is calculated
from nf MC steps �trials�, where the entire future of the
peptide can move by changing the future angles �k , . . . ,�6N

while the angles �1 , . . . ,�k−1 and their related atoms �defin-
ing the past� are kept fixed at their values in conformation i.
A small segment �bin� ��k �see also Eq. �5�� is centered at �k

and the number of MC visits to this bin, nvisit, during the
simulation is calculated; one obtains


��k
�k−1 ¯ �1� � 
HS��k
�k−1 ¯ �1� = nvisit/�nf��k� ,

�9�

where the relation becomes exact for very large nf�nf →�
and a very small bin ���k→0� �see discussion in Paper I
�Ref. 54��. This means that in practice 
HS��k 
�k−1 . . .�1�
will be somewhat approximate due to insufficient future
sampling �finite nf�, a relatively large bin size ��k, an imper-
fect random number generator, etc.; therefore, we denote this
TP by HS �rather than by HSMC—for the sake of brevity�.
Notice that unlike the deterministic calculation of Zfuture �Eq.
�6�� where the limits of �0 are in practice unknown, with
HSMC the future structures generated by MC at each step k
remain in general within the limits of the microstate �0 de-
fined by the analyzed MC sample. In some cases, however,
the future samples might escape from this region; therefore,
the �k�min� and �k�max� values �Eq. �8�� are used to keep
the future structures within �0 by rejecting MC moves with
angle values beyond those of �k�min� and �k�max�. The cor-
responding probability density is


HS��6N, . . . ,�1� = �
k=1

6N


HS��k
�k−1 ¯ �1� . �10�


HS���k�� defines approximate entropy and free energy func-
tionals, SA and FA, respectively,

SA = − kB� 
B ln 
HS���k��d�1 ¯ �6N, �11�

FA = �E − TSA

= �E + kBT� 
B�ln 
HS���k���d�1 ¯ �6N, �12�

where �E is the Boltzmann average of the potential �force
field� energy estimated from the MC �or MD� sample and 
B

�Eq. �2�� is the Boltzmann probability density with which the
sample has been generated. SA is estimated from a Boltz-
mann sample of size n by the arithmetic average of the
ln�
HS� values. As discussed in Sec. II B, the fluctuation
�standard deviation� 
F of the correct free energy is zero,
while the approximate FA has finite fluctuation, �A �esti-
mated by its arithmetic average, �A�, which is expected to
decrease as the approximation improves,31,32,49,50,52,53,62

�A = �1

n
�
t=1

n

�F̄A − Et − kBT ln 
t
HS�2�1/2

. �13�

SA and FA are expected to overestimate and underestimate,
respectively, the correct values, where the fluctuation of FA,
�A �Eq. �13��, does not vanish, but decreases as the approxi-

mation improves, i.e., as nf increases and/or ��k decreases. 397
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E. The HSMD method

Unlike HSMC, HSMD is applied to a sample generated
by MD. To verify that the sample conformations remain
within the microstate �0 of interest �e.g., a helix� each of
them is expressed in internal coordinates, �k’s �Eq. �8��.
Equation �9� can be used also with MD, where at step k of
the reconstruction procedure an MD simulation of the future
chain starts from the reconstructed conformation i, and every
l fs the current conformation is considered; thus, the initial
conformations generated are ignored for equilibration and
the next nf future conformations are expressed in internal
coordinates and their contribution to nvisit �Eq. �9�� is calcu-
lated.

However, as with the MC implementation, an essential
issue is to keep the future chains within the limits of the
microstate �0—a condition that might be violated for large
nf; therefore, the above procedure has been changed by di-
viding it into several �m� shorter repetitive procedures
�“units”�, each based on nf��nf conformations where nf

=mnf�, and each unit starts from the reconstructed structure i
with a different set of velocities; the unit size nf� �and the
equilibration length� should be correctly chosen that it is
small enough to keep the future chain within the microstate
but allow an adequate sampling of this microstate; a similar
procedure was first suggested by Brady and Karplus65 within
the framework of the quasiharmonic method and was also
used in implementations of the LS method to peptides.66,67

Another practical change from the HSMC implementation is
the need to treat a pair of angles simultaneously, where each
pair consists of a dihedral angle and its successive bond
angle �e.g., � and the bond angle N–C�–C��. Thus, at each
step both �k and �k+1 are considered and each must be lo-
cated within the limits of ��k and ��k+1, respectively, in
order to increase nvisit by 1.

This MD implementation is based on three parameters,
��k, nf� and m, while only two parameters are needed for the
MC implementation. The unit nf� should be adjusted where it
can be increased as the microstate’s stability increases. An
adequate nf� should lead to smaller entropy as m is increased
or ��k is decreased. In general one would attempt to apply
the largest nf� that still satisfies these requirements. From now
on we shall replace nf� by the word unit.

It should be pointed out again that in the case of HSMD
FA includes the bond stretching energy while the correspond-
ing entropy is ignored. However, under the assumptions
leading to Eq. �1� this is not expected to affect differences in
free energy which are our main interest. Still, if one seeks to
include the bond stretching entropy, one can use a transition
probability density 
�ak� similar to Eq. �9� for the bond
length ak which corresponds to the pair of atoms k and k
+1; considering the Jacobian, one obtains 
�ak�
�nvisit / �nf3

−1��ak
3��, where �ak is small compared to ak. In

this approximation the bond stretching is independent of the
other interactions and thus 
TP

HS=
HS��k 
�k−1 . . .�1�
�ak�.
Both probability densities can be calculated simultaneously,
PY 513623JCP  

which in practice would not increase computer time.
513623JCP  

F. Upper bounds for the free energy

In addition to FA�
HS���k��� �Eq. �12��, which in practice
is a lower bound, one can define another approximate free
energy functional denoted FB,48

FB = �
�0


HS���k���E + kBT ln 
HS���k���d�1 ¯ d�6N.

�14�

According to the free energy minimum principle,68 FB�F
�Eq. �4��. Thus, FB is an upper bound which approaches the
correct free energy F when 
HS→
B �Eq. �2��. It is necessary
to rewrite Eq. �14� such that FB can be estimated by impor-
tance sampling from a �Boltzmann� sample of configurations
generated with 
B �rather than 
HS�. It has been shown that

FB =
��0


B�
HS exp�E/kBT��E + kBT ln 
HS��d�1 ¯ d�6N

��0

B�
HS exp�E/kBT��d�1 ¯ d�6N

.

�15�

In practice FB is estimated as the ratio of simple arithmetic
averages, which are accumulated for each of the quantities in
the brackets in Eq. �15�. It should be noted, however, that the
statistical reliability of this estimation �unlike the estimation
of FA� decreases sharply with increasing system size, be-
cause the overlap between the probability distributions 
B

and 
HS decreases exponentially �see discussion in Ref. 45�.
With values for both FA and FB, their average FM defined by

FM = �FA + FB�/2, �16�

often becomes a better approximation than either of them
individually. This is provided that their deviations from F �in
magnitude� are approximately equal, and that the statistical
error in FB is not too large. Typically, several improving
approximations for FA, FB, and FM are calculated and their
convergence enables one to determine the correct free energy
with high accuracy.

It should be pointed out that the probability distribution
defined by HSMC is stochastic as compared to the determin-
istic distribution �for a given sample� obtained by the LS
method and the deterministic HS method. In Ref. 51 it is
proved that the inequalities FA�F�FB hold for the stochas-
tic probabilities as well.

These conclusions hold also for HSMD provided that the
assumptions leading to Eq. �1� are valid. In this case FB �like
FA� will be increased by an additive constant �contributed by
the bond stretching energy� which will be canceled out in
free energy differences of microstates. Because E /kBT
+ln 
HS is exponentiated in both the numerator and denomi-
nator of Eq. �15�, if deviations from these assumptions occur,
they will affect FB more significantly than FA and to observe
the expected behavior of FB one might need to consider the
bond stretching entropy as well.

G. Exact expression for the free energy

As shown for fluids in Ref. 51, the denominator of FB in
Eq. �15� defines an exact expression for the partition func-

tion, 501
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1

Z
=

1

Z
�

�0


B�
HS/
B��d�k�

= �
�0


B�
HS exp�E/kBT���d�k�

= �
�0


B exp�FHS/kBT��d�k� , �17�

and an exact expression for the correct free energy F denoted
by FD is

FD = kBT ln� 1

Z
� = kBT ln��

�0


B exp�FHS/kBT��d�k�� ,

�18�

where �d�k�=d�1 . . .d�6N and FHS/kBT= �E��k�� /kBT
+ln 
HS��k�.

In practice, the efficiency of estimating F by FD depends
on the fluctuation of this statistical average, which is deter-
mined by the fluctuation of FHS exponentiated. Obviously, as
FHS→F �i.e., 
H→
B� all fluctuations become zero and F
can be obtained from a single configuration �see discussion
following Eq. �4� and Ref. 51�. Therefore �as for FB�, the
direct calculation of F through FD will not be as statistically
reliable as the corresponding calculation for the lower bound
estimate, FA, however, FD is expected to be more statistically
reliable than FB which is defined as a ratio of two summa-
tions similar to that defining FD. These conclusions hold also
for HSMD provided that the assumptions leading to Eq. �1�
are correct. The discussion in the preceding section II F re-
garding FB applies also to FD.

H. The local states method

We compare our results to those obtained by the LS
method. With this method the ranges ��k �Eq. �8�� are di-
vided into l equal segments, where l is the discretization
parameter. We denote these segments by �k, ��k=1, l�. Thus,
an angle �k is now represented by the segment �k to which it
belongs and a conformation i is expressed by the correspond-
ing vector of segments ��1�i�, �2�i� , . . . ,�6N�i��. Under this
discretization approximation 
��k 
�k−1 . . .�1� can be esti-
mated by


��k
�k−1 ¯ �1� � n��k, . . . ,�1�/�n��k−1, . . . ,�1����k/l�	 ,

�19�

where n��k , . . . ,�1� is the number of times the local states
�i.e., the partial vector ��k , . . . ,�1� representing ��k , . . . ,�1��
appears in the sample. Because the number of local states
increases exponentially with k one has to resort to approxi-
mations based on smaller local states that consists of �k and
the b angles preceding it along the chain, i.e., the vector
��k ,�k−1 , . . . ,�k−b�, where b is the correlation parameter. The
sample is visited for the second time and for a given b one
calculates the number of occurrences n��k ,�k−1 , . . . ,�k−b� of
all the local states from which a set of transition probabilities
p��k 
�k−1 , . . . ,�k−b� are defined. The sample is then visited
PY 513623JCP  

for the third time and for each member i of the sample one
513623JCP  

determines the 6N local states and the corresponding transi-
tion probabilities, whose product defines an approximate
probability density 
i�b , l� for conformation i,


i�b,l� = �
k=1

6N

p��k
�k−1, . . . ,�k−b�/���k/l� , �20�

the larger are b and l the better the approximation �for
enough statistics�. 
i�b , l� allows one to define rigorous up-
per and lower bounds for the entropy and free energy, SA

�Eq. �11�� and FA �Eq. �12��, respectively.

I. The quasiharmonic approximation

With the quasiharmonic �QH�approximation 40,41 the en-
tropy SQH is given by

SQH = �1/2�6NkB + �1/2�kB ln��2��6N�� , �21�

where � is the determinant of the covariance matrix of the
6N dihedral and bond angles.

III. RESULTS AND DISCUSSION

A. Simulation details for „Gly…10

To obtain stable MD samples of �Gly�10 in the helix,
hairpin, and extended microstates the temperature was low-
ered to 100 K and each sample was started from a specific
energy minimized structure. Thus, the initial helix structure
�i.e., before minimization� is defined by �i=�i=−55° and
�i=180° and the extended structure is �i=�i=�i=180°, i
=1,10; the initial hairpin structure is �i=�i=�i=180° for i
=1,4 and i=7,10, while �5=60°, �5=−30°, �5=180°, �6

=90°, �6=0°, �6=180°, i.e., the hairpin creates a type I�
turn. The first 5000 MD steps were used for equilibration and
then 300 000 production MD steps were performed with a
step size of 1 fs. The velocity-Verlet algorithm21 was used to
generate the dynamics with the Berendsen21 heat bath con-
trolling the temperature. A configuration was retained for fu-
ture analysis every 500 MD steps; in this way three samples,
each of 500 structures, were generated for the three mi-
crostates of �Gly�10. As has been discussed in Sec. II E, to
keep the future chains within the limits of the microstate the
trajectory of the future chain is assembled from units of
smaller trajectories. Each different unit is generated by re-
starting the simulation from the same initial conformation
�the future part of the restructured conformation i� but with
different velocities and discarding the initial configurations
for equilibration. In this way, we can obtain rather large
samples in which the system remains within the limits of the
microstate. A unit �nf�� was formed by keeping configurations
every ten MD steps �i.e., 10 fs�, where we seek to find the
largest unit for which SA decrease with decreasing the bin
size ��k and increasing nf �Eq. �9��. Different unit sizes were
explored and the results for SA and FA differ slightly with
unit size although we verify that the differences in these
quantities—our main interest—are independent of the unit
size. Notice, however, that the unit size should be the same

while comparing different microstates �but it can vary from 596
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system to system�. For �Gly�10 we have studied nf�=unit
=1500 �15 ps�, 2000 �20 ps�, and 500 �5 ps�, where the
equilibration size is 500 �5 ps�.

The TPs and their product, 
HS �Eqs. �9� and �10��, were
calculated by reconstructing each conformation step by step
with MD simulations of the future part. As mentioned earlier,
for MD simulations �unlike MC� the bin becomes two-
dimensional and a two-dimensional TP density is measured
replacing the one-dimensional TP used in HSMC. To check
the convergence of the results they were calculated for four
future sample sizes, nf =2000, 3000, 4000, 6000, 12 000,
18 000, and 24 000 and for unit=500 also nf =500 and 1000.
The future samples were generated for four bin sizes, �
=��k /15, ��k /10, ��k /5, and 20°, centered at �k �i.e.,
�k±� /2�. Notice that as for the LS method, the bin size is
proportional to ��k. If the counts of the smallest bin are

TABLE I. The differences �in deg� between the minimum and maximum
values of the dihedral angles �Eq. �8�� of �Gly�10 obtained from MD samples
of 400 conformations of the helix, hairpin, and extended microstates.

Res. No.

Extended Helix Hairpin

�� �� �� �� �� �� �� �� ��

1 66 159 34 50 125 38 50 245 39
2 81 51 35 43 45 26 155 60 35
3 83 49 37 37 32 28 57 38 30
4 89 49 41 35 42 28 63 46 33
5 97 47 31 33 40 30 40 95 31
6 112 52 36 36 41 26 156 52 29
7 143 43 33 43 44 29 77 48 31
8 99 54 35 32 38 33 74 34 31
9 99 49 32 39 35 25 85 46 31

10 119 52 30 64 48 33 216 53 32

TABLE II. Entopy TSA �T=100 K� in kcal/mol �Eq. �
sizes nf obtained with the HSMD method for the thre
defined in Eq. �8�. n is the number of MD conformati
in parentheses, e.g., 32.83�3�=32.83±0.03. SQH is the
�20�� is SA obtained by the local states �LS� method us
�SA� of the flexible model obtained in Table IV of Pa
additive constant.

Bin size nf Extended Heli

Unit=1500
��k /5 6 000 33.12�2� 29.15
��k /5 12 000 33.15�4� 29.18
��k /5 18 000 33.15�3� 29.19
��k /5 24 000 33.16�3� 29.20

��k /10 6 000 32.82�1� 28.83
��k /10 12 000 32.89�3� 28.90
��k /10 18 000 32.90�2� 28.92
��k /10 24 000 32.90�3� 28.93
��k /15 6 000 32.74�2� 28.74
��k /15 12 000 32.82�6� 28.83
��k /15 18 000 32.84�2� 28.85
��k /15 24 000 32.83�3� 28.85

TSflex�I
a� 28.5 �3� 24.4

TSQH 33.5 �1� 29.4
TSLS 34.8 �1� 32.1

a

PY 513623JCP  

Reference 54.
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smaller than 50, the bin size is increased to the next size, and
if necessary to the next one, etc. In the case of zero counts,
nvisit is taken to be 1; however, zero counts is a very rare
event. For �Gly�10 samples of n=400 structures were ana-
lyzed.

B. Results for the entropy of „Gly…10

In Table I we present the values of ��k �Eq. �8�� for the
extended, helix, and hairpin microstates obtained from the
corresponding MD samples. These values suggest that the
samples indeed are concentrated in conformational space as
expected.

It should first be pointed out that as for the dihedral
angles, Eq. �9� was used with ��k also for the bond angles,
i.e., without considering the Jacobian component
�	k sin��k��, because we have found that to a good approxi-
mation, the contribution of the Jacobian to the entropy can-
cels out in entropy and free energy differences, which are our
main interest; this allows us to compare the HSMD results
for the entropy and free energy to those obtained with the
flexible model of Paper I �Ref. 54� which were calculated
without the Jacobian as well. Table II contains the results of
the entropy SA �Eq. �11�� for the three different microstates,
where the results on the left hand side are for unit=1500 and
they were obtained from samples of n=400 conformations;
for comparison we also provide results for unit=2000 on the
right hand side of the table based on smaller samples of n
=200 conformations. The results were calculated for four
different future sample sizes nf and four bin sizes. However,
the extent of convergence of these results is demonstrated by
the best ones, i.e., those for the three smallest bin sizes,
��k /5, ��k /10, and ��k /15, and therefore only they are

or three bin sizes ��k / i �Eq. �5��, and future samples
rostates of �Gly�10 with unit=1500 and 2000. ��k is
a microstate sample. The statistical errors are given

iharmonic entropy �Eq. �21�� and SLS �Eqs. �11� and
=1 and l=10 �for details see text�. Sflex is the entropy
by HSMC �Ref. 54�. The entropy is defined up to an

Hairpin Extended Helix Hairpin

00 Unit=2000 n=200
30.6 �2� 33.18�7� 29.3�1� 30.7�2�
30.6 �2� 33.20�7� 29.3�1� 30.7�2�
30.6 �2� 33.21�6� 29.3�1� 30.7�2�
30.6 �2� 33.21�7� 29.3�1� 30.7�2�
30.0 �2� 32.90�8� 29.0�1� 30.2�2�
30.1 �2� 32.95�9� 29.0�1� 30.2�2�
30.1 �2� 32.97�8� 29.0�1� 32.2 ��
30.1 �2� 32.97�8� 29.0�1� 30.2�2�
29.9 �2� 32.82�8� 28.9�1� 30.1�2�
29.9 �1� 32.89�9� 29.0�1� 30.1�2�
30.0 �1� 32.91�8� 29.0�1� 30.1�2�
30.0 �1� 32.90�8� 29.0�1� 30.1�2�
25.41�7�
31.8 �1�
34.9 �6�
11�� f
e mic
ons in

quas
ing b
per I

x

n=4
�6�
�6�
�6�
�6�
�6�
�5�
�6�
�6�
�7�
�6�
�7�
�7�
�1�
�1�
�2�
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presented in the table. The statistical errors were obtained
from the fluctuations and results obtained for partial samples.

One would expect SA to decrease with decreasing the bin
size—an expectation that indeed is materialized in the results
of Table II. It should be pointed out, however, that the de-
crease of SA in going from �=��k /10 to ��k /15 is approxi-
mately 0.1 kcal/mol �or smaller� within a relatively large
statistical error of up to ±0.2 kcal/mol. One would also ex-
pect SA to decrease as the sample size, nf of the future chains,
increases. However, when nf is increased the chance also
increases for the creation of future chains that fluctuate sig-
nificantly and might even deviate from the limits of the mi-
crostate leading thus to a decrease in the value of nvisit �Eq.
�9�� and hence to a larger SA. Indeed, this effect is observed
in the table for �=��k /10 and ��k /15 as TSA increases from
nf =6000–12 000; however, for nf =18 000 and 24 000 �and
in many cases also for nf =12 000� the values of TSA are
practically equal �within the error bars�. These results sug-
gest that for the given sample size n �which determines to a
large extent the statistical errors� decreasing � or increasing
nf further would not lead in most cases to better �i.e.,
smaller� SA. However, the fact that the same decrease in
SA�nf� is observed in going from ��k /10 to ��k /15 suggests
that for ��k /15 SA�nf� is obtained with the same accuracy
for the three microstates. This means that differences in
SA�nf� for these microstates �which is our main interest� are
expected to lead to the correct values, because the equal
errors in SA�nf� would get canceled. We shall return to this
issue later.

To demonstrate the effect of the unit size we have also
calculated results for unit=2000, which, as expected, are
shown to be slightly larger than their counterparts for unit
=1500 due to the increase in the number of fluctuating future
chains �as explained in the previous paragraph for the case of
increasing nf�. As discussed later, using unit=2000 will not
change the differences in TSA�nf�. We also provide results for
TSA obtained in Paper I �Ref. 54� for the flexible model of

TABLE III. SMD results for the free energy FA �Eq.
is a lower bound of the free energy and �A �Eq. �13��
samples of n=400 conformations for the smallest bi
�Eq. �21�� and FLS �Eq. �12� and �20�� are free energ
local states method, respectively, and are based on la
of the HSMD samples, and Eflex �I �Ref. 54��, the ene
HSMC �Ref. 54�� appear in the two bottom rows; �E

free energies �at T=100 K� are in kcal/mol and are
defined in the caption of Table II.

Extended

HSMC/nf −FA �A, �E

6 000 76.65�4� 1.30�7� 1
12 000 76.73�4� 1.29�7� 1
18 000 76.74�4� 1.29�7� 1
24 000 76.74�4� 1.28�6� 1
−FQH 77.6 �2�
−FLS 78.9 �2� 1
−eint 43.91�6� 1.46�3�
−Eflex �Ia� 56.0 �3� 1.0 �3�
aReference 54.
PY 513623JCP  

decaglycine �i.e., with constant bond lengths� where they are
513623JCP  

shown to be lower by �4 kcal/mol than the present MD
results that are based on more flexible chains �see also dis-
cussion in the second paragraph of the Summary section�.

The HSMD results for the entropy are also compared in
the table with those obtained using the LS and QH methods.
For this we generated for QH larger MD samples of 10 000,
10 000, and 5000 conformations for the extended, helix, and
hairpin microstates, respectively, by retaining a conformation
every 30 fs. For LS samples of size 18 000 were generated
by retaining a conformation every 10 fs. As expected, the
QH results �like those obtained in Paper I� are larger than the
HSMC values—here by 0.7–1.8 kcal/mol. The LS results
�calculated for b=1, l=10� are larger than the corresponding
QH values, as has also been found in Paper I.

C. Results for the free energy of „Gly…10

Results for the free energy functional FA �Eq. �12�� and
its fluctuation �A �Eq. �13�� and the energies are presented in
Table III. These results are given only for the smallest bin
��k /15 because FA values for the other bins can be obtained
from the entropies of Table II and the energies provided in
the bottom of Table III. FA �like SA� does not change within
the error bars as nf is increased from 12 000 to 24 000 and
the central values of the fluctuations, as expected, decrease
as the approximation improves but this decrease is insignifi-
cant within the error bars.

The results for FB are not provided in the table because
they do not behave as expected, i.e., they do not decrease as
nf is increased or as the bin size is decreased. This “misbe-
havior” can be attributed to a too small sample size n, or
might stem from the fact that the bond stretching energy is
included in the potential energy while the corresponding en-
tropy is not taken into account in 
HS �Eq. �10��. More spe-
cifically, while the differences between the bond stretching
energies of conformations are of �1 kcal/mol, these differ-
ences �divided by RT� increase to �5 kcal/mol and affect

, the energy E, and their fluctuations for �Gly�10. FA

s fluctuation. The HSMD results were obtained from
, �=��k /15, but for all future sample size nf. FQH

tained by the quasiharmonic approximation and the
samples �see text�. The average potential energy Eint

f the flexible model �from Table VI of Paper I using
energy fluctuation �these results are in kcal/mol�. All
d up to an additive constant. The statistical error is

Helix Harpin

A �A, �E −FA �A, �E

9�6� 1.46�2� 94.1�2� 1.42�3�
7�6� 1.45�3� 94.2�2� 1.41�3�
0�6� 1.44�3� 94.2�2� 1.40�3�
0�6� 1.43�3� 94.2�2� 1.40�3�
9�6� 96.1�4�
�2� 99.1�2�

5�2� 1.57�6� 64.2�1� 1.55�7�
�3� 1.4 �2� 79.1�5� 1.3 �2�
�12��
is it

n size
ies ob
rger
rgy o

is the
define

−F

10.5
10.6
10.7
10.7

111.3
12.7
81.8
96.2
the exponential terms in Eq. �15� without the corresponding 717
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compensation from the entropy term, 
HS. Still, the results
obtained for FB are always larger than those for FA and thus
probably provide upper bounds, but the deviations are rela-
tively large �FB=71.0, −106.4, and −87.3 kcal/mol for ex-
tended, helix, and hairpin, respectively�. Therefore, it is not
clear whether the FB results lead to improved approximations
for the free energy, i.e., whether the average values FM �Eq.
�16�� are better than those of FA. We have also calculated
results for FD which have been found to be smaller than the
corresponding FB values but larger than those for FM. While
it would be good to have reliably behaving results for FB and
FD we demonstrate below that one can obtain reliable differ-
ences in entropy �and free energy� which are our main inter-
est from differences in SA �and FA�.

In Table III we also provide the average potential ener-
gies and fluctuations of the different microstates. As ex-

TABLE IV. Entopy TSA �T=100 K� in kcal/mol �Eq. �11�� for three bin
sizes ��k / i �Eq. �5�� obtained with the HSMD method for the three mi-
crostates of �Gly�10 with unit=1500 and 500 based on smaller future sample
sizes, nf. ��k is defined in Eq. �8�. The HSMD results are based on samples
of n=400 conformations. The boldfaced results were obtained for unit
=500. The statistical errors are defined in the caption of Table II. SQH is the
quasiharmonic entropy �Eq. �21�� and SLS �Eqs. �11� and �20�� is the local
states �LS� entropy �SA� obtained for b=1 and l=10. The entropy is defined
up to an additive constant.

Bin size nf Extended Helix Hairpin

��k /5 500 33.09�3� 28.9 �1� 30.4�2�
��k /5 1000 32.86�3� 29.1 �1� 30.3�2�
��k /5 2000 33.04�2� 29.05�6� 30.5�2�
��k /5 3000 33.11�1� 29.13�6� 30.5�2�
��k /5 4000 33.11�2� 29.13�6� 30.5�2�
��k /5 6000 33.13�3� 29.15�6� 30.5�2�

��k /10 500 32.99�3� 28.9 �1� 30.1�2�
��k /10 1000 32.56�3� 28.5 �1� 29.7�2�
��k /10 2000 32.69�2� 28.65�6� 29.9�2�
��k /10 3000 32.78�2� 28.75�6� 30.0�2�
��k /10 4000 32.80�2� 28.77�6� 30.0�2�
��k /10 6000 32.83�2� 28.81�6� 30.0�2�
��k /15 500 32.98�3� 28.9 �1� 30.0�2�
��k /15 1000 32.53�3� 28.5 �1� 29.6�2�
��k /15 2000 32.61�3� 28.56�6� 29.7�2�
��k /15 3000 32.68�2� 28.66�5� 29.8�2�
��k /15 4000 32.71�2� 28.68�6� 29.8�2�
��k /15 6000 32.72�2� 28.70�7� 29.8�2�

TSQH 33.5 �1� 29.4 �1� 31.8�1�
TSLS 34.8 �1� 32.1 �2� 34.9�6�

TABLE V. Differences in the entropy T�SA �kcal/mo
HSMD for �Gly�10. n is the size of the reconstructed M
statistical error is defined in Table II. Results for the fl
Paper I �Ref. 54�.

Unit=1500 n=400

nf =24 000 nf =6000 nf =2000

T�Sextend−Shairpin� 2.9�1� 2.9�2� 2.9 �2�
T9Sextended−Shelix 4.0�1� 4.0�1� 4.0 �1�
T�Shairpin−Shelix� 1.1�1� 1.2�1� 1.2 �1�
a

PY 513623JCP  

Reference 54.
513623JCP  

pected, the energy fluctuations are always larger than the
corresponding free energy fluctuations. For comparison we
also present the energy values from Paper I �Ref. 54� �Table
VI� for the flexible model I studied there, which are
�15 kcal/mol lower than the present MD results.

D. Differences in entropy and free energy of „Gly…10

Computer time increases linearly with nf, therefore it is
of interest to check the effect of decreasing nf on the entropy
results. In Table IV we provide results for TSA for unit
=1500 with nf =2000, 3000, 4000, and 6000 for samples of
size n=400. We also present results for unit=500�5 ps� for
nf =500 and 1000 �results are boldfaced in the table�. The
results for unit=1500 behave the same way as in Table II,
i.e., they decrease as the bin size decreases from �=��k /5 to
��k /15 and are approximately constant within a bin. As ex-
pected, because of smaller nf values, the results of each bin
in Table IV are always somewhat smaller than their counter-
parts in Table II.

Because we are mostly interested in entropy differences,
in Table V we present the differences T�SA for the three
microstates for several nf values for unit=2000, 1500, and
500 �for the smallest bin� and also for the flexible model of
Paper I. The table reveals that all these results are equal
within the error bars, which are the largest for the flexible
model and for unit=2000 for which the results are based on
a relatively small sample size, n=200. On the other hand,
even for unit=500 �nf =500� the errors of 0.1 and
0.2 kcal/mol are relatively small while the computer time is
48 times smaller than that required for nf =24 000. In fact,
reconstructing a conformation of �Gly�10 based on nf

=24 000 requires 2.4 h CPU on a 2.4 GHz Athlon processor
whereas a reconstruction based on nf =500 requires 3 min
CPU. One can still increase the integration step to 2 fs which
would decrease this time further to 90 s. It should be pointed
out that similar results for T�SA were obtained for other nf

values and for the second smallest bin ���k /10�. The fact
that the differences T�SA are constant while the values of SA

change within a range of 0.5–0.6 kcal/mol suggest that
these differences would remain constant also for more and
more accurate values of SA and thus they constitute the cor-
rect differences within the error bars. In other words, for a
given approximation, for each microstate j �e.g., a helix�,
SA�j�=Sexact�j�+�S, where �S is an error which is approxi-

T=100 K between different microstates obtained by
ample; nf is the sample size of the future chains. The
e model �using HSMC� were taken from Table VI of

nit=500 n=400 Unit=2000 n=200

Flexible
model �Ia�=1000 nf =500 nf =6000

.9 �2� 2.9 �2� 2.8 �3� 3.0 �3�

.0 �1� 4.0 �1� 3.9 �2� 4.0 �3�

.1 �1� 1.1 �1� 1.2 �1� 1.0 �2�
l� at
D s

exibl

U

nf

2
4
1
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mately the same for all the microstates j and thus is canceled
in the differences �SA.

The above results demonstrate the advantage of MD
over the MC procedure used in Paper I. With MD the con-
formational changes at each step are carried out determinis-
tically along the forces �by solving Newton’s equation of
motion� and hence they are imposed with similar efficiency
on the different microstates. Thus, if the amount of MD sam-
pling is changed the three microstates are affected equally
and the corresponding changes in entropy are approximately
the same. On the other hand, for low nf values the efficiency
of the MC procedure depends on the simulated structure
�more rejections occur for a compact one�, where our proce-
dure has been found to be most efficient for the extended
microstate, and as discussed in Paper I, a relatively large nf

=160 000 is needed for calculating reliably T�SA values for
the three microstates; in this case the reconstruction of a
single structure requires 2.4 h CPU, which is 100 times
larger than that requires with the shortest MD run �nf =500,
and 2 fs step size�.

In Table VI we provide the differences in energy �E and
free energy �FA for the three microstates and their counter-
parts for the flexible model from Paper I. The table reveals
that the two sets of �E values are similar, which explains the
equality in the T�SA values of the two models in Table V. As
one would expect, the larger �E values correspond to the
larger T�SA values in Table V; however, changes in �E cor-
respond to much smaller changes in T�SA, e.g., an
increase of 17.6 kcal/mol in �E �in going from
20.30 to 37.94 kcal/mol, see Table VI� corresponds to an in-

TABLE VII. The differences �in deg� between the minimum and maximum
values of the dihedral angles �Eq. �8�� of �Val�2�Gly�6�Val�2 obtained from
MD sample of 400 conformations of the helix and hairpin microstates.

Res. No.

Helix Hairpin

�� �� �� �� �� ��

1 42 62 31 48 38 28
2 37 44 24 26 36 30
3 44 48 23 50 32 29
4 41 47 29 36 42 26
5 36 42 25 31 47 31
6 37 45 25 30 44 38
7 46 45 23 37 133 35
8 44 58 27 101 42 32
9 55 41 24 30 37 34
10 37 50 33 34 115 40

TABLE VI. Differences in energy �E and free ene
crostates of �Gly�10 obtained by HSMD and in Paper I
�FA results were calculated for a sample of n=400 c
��k /15.

Microstates �E �E �flex

Extended-hairpin 20.30�7� 23.1
Extended-helix 37.94�7� 40.2
Hairpin-helix 17.64�6� 17.0

aReference 54.
PY 513623JCP  
513623JCP  
crease of 1.1 kcal/mol of T�SA �in going from
2.9 to 4.0 kcal/mol for the first set of results in Table V�.
Thus, we have calculated the average bond stretching energy
and have obtained 8.57, 9.95, and 9.23 kcal/mol for the ex-
tended, helix, and hairpin microstates, respectively. The dif-
ferences between these values contribute very little to the �E
values in the table and therefore the corresponding bond
stretching entropies are expected to be small and thus will
not contribute to the differences in Table V. This justifies our
ignoring the bond stretching entropy from SA �but not neces-
sarily from FB as previously discussed�.

E. Results for SA and FA for „Val…2„Gly…6„Val…2

The MD samples at T=100 K for �Val�2�Gly�6�Val�2

were obtained in a similar way as described for �Gly�10 but
with the following changes. First, only the helix and hairpin
microstates were studied, because the extended state was
found to be unstable even at 100 K. Second, the step size
was increased to 2 fs where bonds involving hydrogens were
frozen to their ideal values by using the RATTLE algorithm.21

Also, the microstates of �Val�2�Gly�6�Val�2 are less stable
than those of �Gly�10 which required using smaller units of
sizes 600 and 400. The ��k values for the two microstates

TABLE VIII. Entropy TSA �T=100 K� in kcal/mol �Eq. �11�� for three bin
sizes ��k / i �Eq. �5�� and future sample sizes n obtained with the HSMD
method for the helilx and hairpin microstates of �Val�2�Gly�6�Val�2 based on
unit=600 and 400. ��k is defined in Eq. �8�. The HSMD results are based
on samples of n=400 conformations. The statistical errors are defined in the
caption of Table II. SQH is the quasi harmonic entropy �Eq. �21�� and SLS

�Eqs. �11� and �20�� is the local states �LS� entropy �SA� obtained for b=1
and l=10. The entropy is defined up to an additive constant.

nf Helix Hairpin Helix Hairpin

Unit=600 n=400 Unit=400 n=200
��k /5 6 000 31.07 �3� 30.6 �1� 31.1 �1� 30.8 �2�
��k /5 12 000 31.06 �2� 30.6 �1� 31.1 �1� 30.7 �2�
��k /5 18 000 31.05 �2� 30.6 �1� 31.1 �1� 30.7 �2�
��k /5 24 000 31.04 �3� 30.6 �1� 31.1 �1� 30.7 �2�

��k /10 6 000 30.75 �2� 30.2 �1� 30.8 �1� 30.4 �2�
��k /10 12 000 30.73 �2� 30.2 �1� 30.7 �1� 30.3 �2�
��k /10 18 000 30.71 �3� 30.1 �1� 30.7 �1� 30.3 �2�
��k /10 24 000 30.70 �3� 30.1 �1� 30.7 �1� 30.3 �2�
��k /15 6 000 30.69 �2� 30.1 �1� 30.7 �1� 30.3 �2�
��k /15 12 000 30.67 �2� 30.1 �1� 30.7 �1� 30.2 �2�
��k /15 18 000 30.64 �2� 30.1 �1� 30.7 �1� 30.2 �2�
��k /15 24 000 30.63 �2� 30.0 �1� 30.6 �1� 30.2 �2�

TSQH 31.7 �1� 31.1 �2�
TSLS 35.8 �5� 36.2 �5�

FA �T=100 K� in kcal/mol between the three mi-
. 54 for the flexible model using HSMC. The present
mations, future sample size nf =24 000, and bin size

a� �F �unit=1500� �F �flexible Ia�

17.4�1� 20.1�3�
34.0�1� 36.1�3�
16.5�2� 16.0�2�
rgy �

�Ref
onfor

ible I

�3�
�2�
�2�
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are presented in Table VII, which are shown to be quite
restricted. Not shown in the table are the values of ��1

which
are �30°.

The results for TSA �at T=100 K� for unit=600 and 400
in Table VIII show the expected behavior, i.e., they increase
with bin size and those for unit=400 are slightly smaller than
their counterparts for unit=600 �see previous discussion re-
garding units of 1500 and 2000 for �Gly�10�. For the given
sample sizes studied, n=400 and 200, the results are con-
verged, i.e., they do not change �within the statistical errors�
with decreasing the bin size or increasing nf. The table re-
veals that the entropies of the two microstates are close.
Again, The QH and LS results constitute upper bounds,
where as for �Gly�10 the QH values are smaller than the
corresponding LS ones. The QH results are based on 5000
and 2500 conformations for the helix and hairpin, respec-
tively �a conformation was retained every 40 fs�, while the
LS results are based on samples of 24 000 conformations
�every 10 fs�.

In Table IX we provide the free energies FA, the poten-
tial energies, and their fluctuations. It should first be pointed
out that the energy difference between the two microstates,
�3 kcal/mol, is relatively small leading thus to a small dif-
ference T�SA as discussed in detail below; correspondingly,
the free energy differences are also small. The tendencies of
the results of both FA and �A are as expected �see discussion
of Table III�; in particular, the �A values are smaller than the
corresponding energy fluctuations, �E.

TABLE IX. HSMD results for the free energy FA �Eq. �12��, the energy E,
and their fluctuations for �Val�2�Gly�6�Val�2. FA is a lower bound of the free
energy and �A �Eq. �13�� is its fluctuation. The HSMD results were obtained
from samples of n=400 conformations for the smallest bin size, �
=��k /15, but for all future sample sizes nf. FQH �Eq. �21�� and FLS �Eqs.
�12� and �20�� are free energies obtained by the quasiharmonic approxima-
tion and the local states method, respectively, and are based on larger
samples �see text�. The average potential energy Eint �in kcal/mol� and its
fluctuation �E appears in the bottom row. All free energies �at T=100 K� are
in kcal/mol and are defined up to an additive constant. The statistical error is
defined in the caption of Table II.

HSMC/nf

Helix Hairpin

−FA �A, �E −FA �A, �E

6 000 163.9�1� 1.76�3� 160.05�7� 1.59�4�
12 000 163.9�1� 1.75�3� 160.03�5� 1.58�4�
18 000 163.9�1� 1.75�3� 160.02�5� 1.56�3�
24 000 163.9�1� 1.74�3� 160.00�5� 1.56�3�

−FQH 165.0�1� 161.0 �1�
−FLS 168.9�5� 166 �2�
−Eint 133.2�1� 1.8 �1� 130.0 �1� 1.72�2�

TABLE XI. Differences in the entropy T�SA �kcal/mol� at T=100 K betwee
is the size of the reconstructed MD sample; nf is the sample size of the futur
�in kcal/mol�. The statistical error is defined in Table II.

Microstates �E �FA

Unit=

nf =24 000

T�Shelix−Shairpin� −3.3�2� −3.87�8� 0.6�1�
PY 513623JCP  
513623JCP  

F. Entropy and free energy differences for
„Val…2„Gly…6„Val…2

Because we are highly interested in an efficient calcula-
tion of entropy and free energy differences, in Table X we
present HSMD results for TSA based on unit=600 obtained
for significantly smaller nf values �2000–6000� than in Table
VIII. The statistical errors here are slightly larger than in
Table VIII, while the TSA results in Table X are smaller than
their counterparts in Table VIII due to smaller nf values that
keep the future chains better within the limits of the mi-
crostates thus leading to larger nvisit values �Eq. �9��. The
expected behavior of the results with decreasing bin size and
increasing nf is observed.

In Table XI results for T�SA, �FA, and �E are presented
for unit=600 and 400 for several nf values. The table shows
that T�SA=0.6±0.2 remains unchanged as nf is decreased
and it is equal within the error bars to 0.4±0.2 kcal/mol
obtained for unit=400 for a smaller sample of n=200. Again,
as for �Gly�10, a significant reduction in computer time can
be achieved for calculating entropy and free energy differ-
ences. Thus, reconstruction of a single structure of
�Val�2�Gly�6�Val�2 using nf =24 000 requires 4.3 h CPU
while for nf =2000 it requires 21 min CPU, and as for
�Gly�10 this time can probably be reduced further by a factor
of 4 to 5 min �using nf =600 or 400�.

TABLE X. Entropy TSA �T=100 K� in kcal/mol �Eq. �11�� for three bin
sizes ��k / i �Eq. �5�� obtained with the HSMD method for the helix and
hairpin microstates of �Val�2�Gly�6�Val�2 using unit=600 and smaller future
sample sizes nf. ��k is defined in Eq. �8�. The HSMD results are based on
samples of n=400 conformations. The statistical errors are defined in the
caption of Table II. SQH is the quasiharmonic entropy �Eq. �21�� and SLS

�Eqs. �11� and �20�� is the local states �LS� entropy �SA� obtained for b=1
and l=10. The entropy is defined up to an additive constant.

nf Helix Hairpin

��k /5 2000 31.03�5� 30.6�2�
��k /5 3000 31.03�5� 30.5�2�
��k /5 4000 31.00�4� 30.5�2�
��k /5 6000 30.96�4� 30.5�1�
��k /10 2000 30.64�5� 30.1�2�
��k /10 3000 30.63�5� 30.1�2�
��k /10 4000 30.60�4� 30.1�2�
��k /10 6000 30.54�4� 30.0�1�
��k /15 2000 30.53�5� 29.9�2�
��k /15 3000 30.53�5� 29.9�2�
��k /15 4000 30.50�4� 29.9�2�
��k /15 6000 30.45�4� 29.9�2�
TSQH 31.7 �1� 31.1�2�
TSLS 35.8 �5� 36.2�5�

helix and hairpin microstates obtained by HSMD for �Val�2�Gly�6�Val�2. n
ins. �E and �FA are the differences in energy and free energy, respectively

n=400 Unit=400 n=200

00 nf =2000 nf =24 000 nf =12 000 nf =2000

2� 0.6�2� 0.4�2� 0.4�2� 0.4�2�
n the
e cha

600

nf =60

0.6�
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IV. SUMMARY AND CONCLUSIONS

In our previous work �Paper I �Ref. 54�� the HSMC
method has been applied initially to polyglycine molecules
in vacuum simulated by MC. Because MD is considered to
be significantly more efficient than MC and hence is the
commonly used method in proteins; in the present paper our
method has been extended to MD simulations and the new
version, HSMD, has been applied to �Gly�10 and for the first
time to a peptide with side chains, �Val�2�Gly�6�Val�2. As
before, we calculate the entropy and free energy of three
microstates, helix, extended, and hairpin, and find the results
to be more accurate than those obtained by the QH and LS
methods that both provide upper bounds for the entropy69

�however, see also discussion in the next paragraph�. We also
compare our results to those obtained for the flexible model
of �Gly�10 in Paper I �Ref. 54� at T=100.

To keep the molecule within the limits of the microstates
during the reconstruction process, the MD simulation is di-
vided into several repeating “units” each unit starts from the
reconstructed conformation i. This raises the following ques-
tions: �1� Is the unit long enough to cover the sampled mi-
crostate? �2� What is the dependence of the results on the
unit size? To answer the first question we generated a 15 ps
MD sample of �Gly�10 and a 6 ps sample of
�Val�2�Gly�6�Val�2 by retaining a conformation every 10 fs
�as in the reconstruction process�, converted these conforma-
tions to internal coordinates, and calculated the ��k values
�Eq. �8�� of the samples. We have found that the ��k sets
thus obtained are comparable to those presented in Tables I
and VII, respectively, suggesting that a suitable coverage is
achieved by these units. On the other hand, it is evident that
the results for the absolute S and F depend somewhat on unit
size and there is no criterion to determine the correct value.
However, this problem reflects the difficulty inherent in de-
fining a microstate in conformational space by simulation,
which affects all entropy methods. For example, to obtain
reasonable precision with QH �or LS� significantly longer
trajectories than those used with HSMD are required �see
text�, which are expected to span larger regions in space thus
leading to an increase in entropy; therefore, the overestima-
tion of the entropy results for QH and LS is probably also
due to this effect of larger trajectories.

However, we have shown that differences in entropy
T�SA obtained from absolute values �calculated for the same
conditions� are very stable for various unit sizes, bin sizes,
and sample size nf, where the latter values can be relatively
small leading to extremely efficient calculations. The accu-
racy of T�SA of 0.1–0.2 kcal/mol is very satisfying; in gen-
eral, the validity of such results can be verified by increasing
the accuracy of HSMD, i.e., decreasing the bin size, increas-
ing nf and/or changing the unit size. We have also argued
that the effect of bond stretching on differences �SA can in
general be neglected but also suggested an approximate way
to take this contribution into account if necessary. The stable
results for entropy differences and the high efficiency ob-
tained in this work open the door for the application of
HSMD to more complex systems. As a next step, HSMD
PY 513623JCP  

will be applied to a flexible loop in a protein where solvent
513623JCP  

effects will be taken into account implicitly. Because
HSMC�D� is applicable to water we intend in a later stage to
apply it to a loop capped by explicit water.
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