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Abstract: The advantage of the multicanonical (MUCA) simulation method of Berg and coworkers over the
conventional Metropolis method is in its ability to move a system effectively across energy barriers thereby providing
results for a wide range of temperatures. However, a MUCA simulation is based on weights (related to the density of
states) that should be determined prior to a production run and their calculation is not straightforward. To overcome this
difficulty a procedure has been developed by Berg that calculates the MUCA weights automatically. In a previous article
(Yaşar et al. J Comput Chem 2000, 14, 1251–1261) we extended this procedure to continuous systems and applied it
successfully to the small pentapeptide Leu-enkephalin. To investigate the performance of the automated MUCA
procedure for larger peptides, we apply it here to deltorphin, a linear heptapeptide with bulky side chains (H-Tyr1-D-
Met2-Phe3-His4-Leu5-Met6-Asp7-NH2). As for Leu-enkephalin, deltorphin is modeled in vacuum by the potential
energy function ECEPP. MUCA is found to perform well. A weak second peak is seen for the specific heat, which is
given a special attention. By minimizing the energy of structures along the trajectory it is found that MUCA provides
a good conformational coverage of the low energy region of the molecule. These latter results are compared with
conformational coverage obtained by the Monte Carlo minimization method of Li and Scheraga.
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Introduction

Biological macromolecules such as proteins have a well-defined
3D structure that is essential for their biological activity. There-
fore, predicting the protein’s structure by theoretical/computa-
tional methods is an important goal in structural biology.1 The
atomic interactions of a protein are commonly modeled by an
empirical potential energy function (force field), which typically
leads to a complex energy profile consisting of a tremendous
number of local minima; their basins of attraction have been called
localized microstates. The energy profile also contains larger po-
tential energy wells defined over wide microstates (e.g., the pro-
tein’s fluctuations around its averaged structure), each including
many localized ones.2 Molecular dynamics (MD)3 simulations
have shown that a system will stay in a localized microstate for a
very short time (several femtoseconds) while spending much
longer times in a wide microstate;4 therefore, the latter are of the

greater experimental interest. For a perfect force field (which also
takes into account the effect of the solvent) the most stable wide
microstate corresponds to the native structure. However, because
of energy barriers, the commonly used thermodynamic simulation
techniques such as the Metropolis Monte Carlo (MC)5 and molec-
ular dynamics are very inefficient at 300 K; thus, the molecule
remains in its starting wide microstate or moves to a neighbor-
wide microstate, but in practice, will never reach the most stable
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one. Therefore, developing statistical mechanics simulation meth-
ods that lead to an efficient crossing of the energy barriers has been
a long-standing challenge.

Peptides, which are much more flexible than proteins, are
typically random coils, but for certain solvents and temperature
conditions might undergo intermediate flexibility, where several
wide microstates are populated significantly in thermodynamic
equilibrium. One then seeks to identify the most stable wide
microstates and to calculate their populations. For peptides, the
MC or MD methods suffer from the same limitation mentioned
above with regard to proteins, and a common alternative has been
a two-stage approach in which the wide microstates are identified
initially by an extensive conformational search for low-energy
minimized structures, and each microstate is then spanned by an
MC or an MD simulation. The free energy of these microstates,
which leads to the populations, can be calculated by the harmonic
approximation6–8 or by the local states method,9 for example.
Therefore, development of efficient methods for conformational
search is desirable as well.10,11 Most of the methodologies for
treating intermediate flexibility have been developed for the anal-
ysis of nuclear magnetic resonance (NMR) structural data of
flexible peptides (see, e.g., refs. 2 and 12, and references cited in
ref. 11).

The trapping problem of the MC and MD methods can be
alleviated to a large extent by the multicanonical (MUCA) MC
method of Berg and collaborators,13–15 which was applied initially
to lattice spin models, and its relevance for complex systems was
first noticed in ref. 14. Application of MUCA to peptides was
pioneered by Hansmann and Okamoto16 and followed by others;17

simulations of protein folding with MUCA and related generalized
ensemble methods are reviewed in refs. 18 and 19.

The MUCA ensemble (unlike a Boltzmann ensemble) is based
on a probability function in which the different energies are
equally probable. For a discrete system, the probability of config-
uration x of energy E is

PMU�x� �
1

Ln�Ex�
�

exp��S�Ex�/kB�

L
. (1)

where L is the number of different energy levels of the system,
n(Ex) is the multiplicity of energy Ex and S(Ex) � kB ln n(Ex) is
the entropy of the microcanonical ensemble at energy Ex (micro-
canonical entropy). In practice L will be defined also for a con-
tinuum system because a finite energy range will be divided into L
small segments. The MC process based on this probability distri-
bution is

px,y � min�1, n�Ex�/n�Ey�� � min�1, exp�S�Ex�/kB � S�Ey�/kB��

(2)

where px,y is the transition probability to select configuration y
with energy Ey following the preceding selection of configuration
x with energy Ex. The system visits the different energies approx-
imately for equal amounts of times and the trapping problem
mentioned above is improved. However, implementation of
MUCA is not straightforward because the density of states n(E) is

unknown a priori. In practice, one only needs to know the weights
�,

w � w�E� � 1/n�E� � exp��S�E�/kB� � exp��E � FT�E��/kBT�E��

(3)

because only ratios of n(E) appear in eq. (2). These weights are
calculated in the first stage of a MUCA process by an iterative
procedure in which the temperatures T(E) are built recursively
together with the microcanonical free energies FT(E)/kBT(E), up
to an additive constant. The iterative procedure is followed by a
long production run based on the fixed ws, where equilibrium
configurations are sampled. Reweighting techniques (see Ferren-
berg and Swendsen20 and literature given in their second refer-
ence) enable one to obtain Boltzmann averages of various ther-
modynamic properties over a large range of temperatures.

As pointed out above, calculation of the a priori unknown
MUCA weights is not trivial, requiring an experienced human
intervention that has been a stumbling block for newcomers to the
method. An alternative way is to establish an automatic process by
incorporating all the assembled statistical within the recursion
procedure. For lattice models, this problem was addressed in a
sketchy way by Berg and Celik14 and later by Berg,21,22 but no
extension to continuum peptide models has been carried out with
the exception of a recent article23 where it is simply stated that the
recursion of ref. 22 has been used. In a more recent article we have
provided a detailed translation of this recursion procedure for
simulations of continuum models of peptides and proteins.24 The
procedure was tested successfully as applied to models of the
pentapeptide Leu-enkephalin (H-Tyr-Gly-Gly-Phe-Leu-OH) de-
scribed by the ECEPP/2 potential energy function.25

To verify the coverage of the low-energy region by the MUCA
sample, we also minimized the energy of selected conformations
of the trajectory and indeed recovered the global energy minimized
structure and other low-energy minimized structures.24 This sug-
gests that MUCA can also serve as a useful conformational search
technique for identifying the most stable wide microstates of a
peptide, as discussed earlier. Although these MUCA results are
very satisfactory, it should be pointed out that they are based on a
selection of candidate structures for energy minimization, which is
based on the canonical ensemble of statistical physics. More con-
formational structures were found with the Monte Carlo minimi-
zation (MCM) method of Li and Scheraga.26

In view of these encouraging MUCA results, it would be of
interest to study its efficiency as applied to molecules of increasing
size, and in particular, to examine the performance of its automatic
recursion procedure (many of the previous studies of MUCA were
applied to relatively small peptides such as the pentapeptides
Met-enkephalin16,27–29 and Leu-enkephalin;24 a larger molecule
studied is poly-alanine, a homopolymer with small side
chains,30,31 and the 13-residue C-peptide of Ribonuclease A.32 A
first step in this direction is carried out in this article where MUCA
is applied to a linear heptapeptide with bulky side chains, deltor-
phin (also known as dermenkephalin) (H-Tyr1-D-Met2-Phe3-His4-
Leu5-Met6-Asp7-NH2). This natural peptide found in frog skin, has
high potency and receptor selectivity for � opioid receptors. To
understand the conformation–activity relationships, NMR studies
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of the solution structures of deltorphin in DMSO and cryoprotec-
tive solvents were carried out33 and computational work was based
on these experiments.34

In this work, as in our previous one,24 deltorphin is modeled by
the ECEPP/2 potential, which assumes a rigid geometry (i.e.,
constant bond lengths and angles), and is based on Lennard–Jones,
torsional, hydrogen bond, and electrostatic potentials, where the
dielectric constant is � � 2 (see ref. 25). Thus, a conformation is
defined solely by the dihedral angles, whose number increases
from 19 (for constant � � 180°) and 24 (variable �) for Leu-
enkephalin, to 36 (constant �) for deltorphin; the latter consist of
the 14 backbone � and � and the 22 side chain angles �. ECEPP
is implemented in the package FANTOM,35 which is used in the
present simulations. Because ECEPP does not consider solvent
effects, we do not attempt to compare our results to experimental
NMR data and only study the efficiency of MUCA as a thermo-
dynamic simulation technique as well as a conformational search
tool for locating low energy minimized structures compared with
MCM.26

Also, as in our previous work,24 at each MC step a single
dihedral angle is treated where its trial value is obtained at random
within the range [�180°, 180°]; the 36 dihedral angles of the
molecule are visited in a predefined order, going from Tyr to Asp,
where such a cycle of n MC steps (n � 36) defines a sweep. In
ref. 24 we have found that the efficiency of MUCA is decreased if
the above range is decreased to [�90°, 90°]; changing several
angles at each MC step has led to a considerable decrease in the
performance as well. However, as the molecular size increases, the
choice of the trial conformations is expected to affect the ability of
the process to reach the low-energy region in conformation space.
This has already been noticed by Hao and Scheraga,17b who have
selected trial conformations with a bias for generating low-energy
conformations.

Details about the implementation of MUCA are given in ref.
24. Here, we only provide a very brief description of the process.
The MUCA weights are a step function of the energy13

wi�x� � exp��biEx 	 ai� for Ei�1 
 Ex � Ei (4)

where the bi are inverse microcanonical temperatures, bi �
(kBTi)

�1, and the ai are related to microcanonical free energies.
The ai are not independent, but follow from the bi. For the
determination of the bi we use the recursion21 in its extension to
continuum peptides.24 It relies on m � 1, 2, . . . short runs with
weights determined by bi

m�1 and the iteration from m � 1 to m is

bi�1
m � bi�1

m�1 	 ĝi�1
m ln�Hi�1

m /Hi
m�/�Ei. (5)

Here, the Hi
m are (not yet used) energy histograms for the range

Ei�1 � E � Ei, and the statistical factor ĝi�1
m incorporates

information about all runs up to m. In particular, ĝi�1
m is zero if

either Hi�1
m or Hi

m is zero, such that the proper limit of ĝi�1
m

ln[Hi�1
m /Hi

m] is also zero in that situation.

Results and Discussion

We first carried out canonical (i.e., constant T) MC simulations at
relatively high temperatures and MUCA test runs, which enabled

us to determine the required energy ranges. Then we performed
full MUCA simulations, which cover reliably the high-temperature
region up to Tmax � 600 K. In these simulations the energy range,
[�4, �44] kcal/mol was divided into 40 bins of 1 kcal/mol each,
where for energies above �4 kcal/mol the same temperature,
Tmax � 600 K was used; the lowest energy encountered was
�43.35 kcal/mol.

The MUCA weights were built recursively during a long single
simulation of 106 sweeps, where the parameters bi and ai were
iterated every 5000 sweeps. Figure 1 depicts how the recursion
works. The simulation is started in the disordered region with an
initial temperature (step) function of Ti � 600 K for all the
segments [Ei�1, Ei] and the figure shows the decrease of the
temperature factors Ti � (bikB)�1 after m � 1, 10, and 100
recursions. The Ti values penetrate deeper and deeper into the
ordered, low-energy region as m increases. For low, but not yet
reached energies, Ti remains on the 600 K line. After 100 recur-
sions this no longer happens, because the lowest energy bin, which
contains the ground state has been reached.

Having fixed the MUCA weight factors, a MUCA production
run was carried out with 106 sweeps (the first 200,000 sweeps were
used for thermalization). Figure 2 shows a typical time series,
more precisely, 1/5 of the entire trajectory of the simulation. From
the MUCA production run canonical ensemble expectation values
of thermodynamic quantities were obtained by reweighting,20

E� �T� �
�tEt exp���Et 	 biEt � ai�

�t exp���Et 	 biEt � ai�
(6)

where each subscript is i � i(t) such that Ei�1 � Et 	 Ei. Figure
3 shows the canonically reweighted energy E as a function of T.
Compared with the multicanonical results are the expectation
values of the energy from canonical simulations of 105 sweeps
each, at temperatures within the range 50 to 400 K. It is clear that
at high temperature the agreement is excellent, whereas the canon-
ical simulations fail to equilibrate at the low temperature region.

In Figure 4 we show our data for the specific heat C, which is
calculated from the energy fluctuations,

C�T� �
1

7kBT
�
E2�T � 
E�T

2� (7)

Figure 1. Development of the temperature functions Tn(E) under the
multicanonical recursion.
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where 7 is the number of amino acids. The peak of C appears at
Tmax � 450 K, which is a significantly higher temperature than the
corresponding value, � 300 K obtained for the specific heat peak
of Met-enkephalin16 and Leu-enkephalin.24 This is an expected
behavior because as the molecule’s size, N, increases the ground
state (or the several ground states) becomes stabilized by a larger
number (� N2) of long-range interactions and a higher tempera-
ture is required to move the molecule from the ordered to the
disordered region; a similar behavior has been observed for lattice
models of trails36,37 as well as continuum models of poly-ala-
nine.30,31

The second interesting feature of Figure 4 is the existence of a
much smaller second peak in the neighborhood of T � 200 K. It
should be pointed out that initially this peak was significantly
larger based on energy fluctuations obtained from a single MUCA
run of 106 sweeps. To check whether this peak has physical
meaning or it is a result of insufficient sampling, we carried out
three additional MUCA simulations of equal length, and the spe-
cific heat curve in Figure 4 is based on a larger sample of 4  106

sweeps. The fact that the height of the second peak in Figure 4 has
been reduced significantly suggests that the occurrence of the
original peak probably stems from poor statistics. This conclusion
is important because two and three peaks in the specific heat have
also been obtained in other simulations of chain models. A recent
study of the C-peptide of ribonuclease A suggests that for a

heteropolymers two separate transition temperatures may exist.32

Studying an isotropic homopolymers, Zhou et al.38 have observed
a second peak in the heat capacity that they have identified as a
solid-solid transition accompanying the crystallization into the
ground state. The occurrence of multiple phase transitions is also
reported for worm-like polymer chains.39

In summary, the use of the multicanonical histogram recursion
has proven to be a convenient way for an automatic generation of
the MUCA weights for the five residue Leu-enkephalin studied
previously as well as for the present seven-residue deltorphin.
Notice, however, that the number of sweeps required for the
automatic procedure appears to be larger than that commonly used
in a manual building of the weights, i.e., by human intervention
after each iteration. Also, to obtain statistically reliable samples for
the specific heat, the required sample size has been increased from
6  105 for Leu-enkephalin to 4  106 for deltorphin.

Energy Minimization

As pointed out in the Introduction, for peptides it is not only of
interest to obtain thermodynamic averages and fluctuations at
different temperatures but also to find the most stable regions in
the conformational space, which allows one to identify the most
stable wide microstates. In the organic chemistry community con-
formational search methods have been developed, and attempts
have been made to find the global energy minimum and all the
energy minimized structures in certain energy ranges above the
GEM [see refs. 10 and 2(b), and references cited therein]. There-
fore, as in ref. 24, it is of interest to investigate the conformational
coverage provided by MUCA, in particular in the low-energy
region.

We energy minimized (quenched) the configurations generated
in 105 sweeps of the MUCA production run. The minimized
structures were sorted according to a variance criterion where two
structures are considered to be different if at least one dihedral
angle differs by more than 2°. The lowest energy found (our
suspected GEM) is

E � �44.1058 kcal/mol (8)

Figure 2. Time series of the multicanonical simulation.

Figure 3. The Boltzmann average energy as a function of tempera-
ture: multicanonical vs. canonical simulations.

Figure 4. Specific heat from multicanonical simulations as a function
of the temperature.
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and its conformation is depicted in Figure 5, where the last four
residues are shown to pertain to the -helical region. The number
of structures found in energy bins of 0.5 kcal/mol above E �
�44.11 kcal/mol appear in Table 1. As in ref. 24, we compare the
conformational coverage of the low-energy region to that obtained
with MCM.26 Because the efficiency of MCM strongly depends on
the temperature,41 we carried out three different MCM simulations
each of 105 steps at T � 300, 400, and 600 K, where only the
results for the last two temperatures are presented in Table 1.
Indeed, the two MCM runs have led to significantly different
results, where the highest population of the five lowest energy bins
is obtained with MCM (400 K), while (as expected) in most cases
MCM (600 K) leads to the largest population of the higher energy
bins (6–13). The populations of bins 1–4 obtained with MCM
(300 K) are between those of MCM (600 K) and MCM (400 K).
Although the populations of MUCA are always smaller than the
corresponding populations obtained with MCM (400 K), for bin 1

the results of the two methods are very close, which means that a
very good coverage of the lowest energy bin is provided by
MUCA. This is important, due to the fact that MUCA covers a
large range of energies in an approximately homogeneous way,
while with MCM (400 K) a strong preference is given for simu-
lating the low energy region. Therefore, it is expected that mini-
mizing the energy of a larger number of MUCA structures (which
for peptides is not a very time consuming calculation) would lead
to a significant increase in the MUCA populations of all the bins.

MUCA is most important as being a thermodynamic method
that enables simulating a system over a large range of tempera-
tures. This aspect is demonstrated in Figure 6, where Ramachan-
dran plots of typical structures for three temperature ranges are
presented. The first set of seven plots (for the seven amino acid
residues) is for the GEM structure and structure pertaining to the
lowest energy bin above the GEM (bin 1 in Table 1). The second
and third sets show the most probable structures for two temper-
ature regions, 130–140 K and 290–300 K, respectively. The figure
reveals that already the second set contains structures that do not
belong to the wide microstate of the GEM structure (i.e., some of
their � and � deviate by more than 60° from the values of the
GEM structure); this is mainly pronounced for the end residues
Tyr and Asp that are expected to be the most flexible. However, for
each residue most of the structures still belong to the wide mi-
crostate of the GEM structure, as expected for a low enough
temperature.

The scattering of points increases significantly for T � 290–
300 K, suggesting that deltorphin modeled with the ECEPP po-
tential will populate at least several wide microstates at room
temperature. In particular, the last four residues, which for the
GEM structure reside in the -helix region become mostly popu-
lated in the extended region. The fact that such a scatter of
structures occurs at a temperature significantly below the transition
temperature, TC � 450 K, reflects the wide peak of the specific
heat (see Fig. 4), which stems from the small size of the present
peptide; only for a large protein a collapse is expected to occur

Figure 5. The conjectured GEM structure with energy defined in eq.
(8). The figure was created by VMD.

Table 1. Number of Energy-Minimized Structures in Energy Bins of 0.5 kcal/mol above E �

�44.11 kcal/mol as Obtained by the MUCA and the MCM Methods.

Bin
(kcal/mol) Energy (kcal/mol) Muca

MCM

T � 600 K T � 400 K

0.0–0.5 �44.11 to �43.61 683 252 769
0.5–1.0 �43.61 to �43.11 883 936 2165
1.0–1.5 �43.11 to �42.61 1532 1889 3367
1.5–2.0 �42.61 to �42.11 906 3229 4754
2.0–2.5 �42.11 to �41.61 1253 4077 4685
2.5–3.0 �41.61 to �41.11 1417 4765 4581
3.0–3.5 �41.11 to �39.61 1807 5396 3931
3.5–4.0 �39.61 to �39.11 1381 6083 3329
4.0–4.5 �39.11 to �38.61 1515 5861 3394
4.5–5.0 �38.61 to �38.11 1340 6109 5044
5.0–5.5 �38.11 to �37.61 1227 5560 6513
5.5–6.0 �37.61 to �37.11 1227 5302 4417
6.0–6.5 �37.11 to �36.61 1332 5157 4037
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Figure 6. Ramachandran plots of each residue (from top to bottom) Tyr1-D-Met2-Phe3-His4-Leu5-Met6-
Asp7. The abscisa is the angle � and the ordinate is �. The first column shows the GEM structure and the
conformations of the lowest energy bin of Table 1; the middle column shows typical conformations for
the temperature range 130–140 K, and the last column typical conformations for the range 290–300 K.



below and relatively close to TC. Indeed, a small linear peptide at
room temperature in general does not populate a single wide
microstate, and analysis of NMR data of deltorphin in DMSO
suggests that several wide microstates are populated significantly
in thermodynamic equilibrium.34 Because the ECEPP potential
used here is not expected to model correctly a peptide in DMSO
we have not attempted to compare our results at 300 K to the NMR
data.

In summary, the objective of this work has been to investigate
the performance of the MUCA method based on the automatic
recursive procedure for peptides introduced by us in ref. 24. There,
MUCA was applied preliminarily to the small pentapeptide Leu-
enkephalin, while here we simulate the larger peptide, deltorphin,
which consists of seven residues with bulky side chains. We find
the multicanonical method to work in precisely the same way as
for Leu-enkephalin; however, the computer time needed increased
by about one order of magnitude. Thus, the 12 h required for a
production run of Leu-enkephalin, become about 1 week for del-
torphin (using a DEC-Alpha 433 MHz workstation). By brute
force and involving parallelization techniques an extension of such
simulations by three orders of magnitude, seems to be in reach,
which will allow treating much larger systems. Also, to enhance
the efficiency of MUCA for larger peptides it might be necessary
to apply a biased selection of conformations, which can be carried
out, for example, with the scanning construction procedure.42
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