Time Delay in Structural Shifts: Modeling Time Delay in Structural Shifts: Modeling Multiple States Multiple States

Andrej Savol, University of Pittsburgh Mentor: Carlos Camacho, University of Pittsburgh BBSI at Pitt

2007

N-type Shaker K+ channels are N-type Shaker K+ channels are composed of four subunits composed of four subunits

N-type Shaker K+ channels are N-type Shaker K+ channels are composed of four subunits composed of four subunits

deactivation site

side view

top view top view

outside of cell

N-type Shaker K+ channel functional states

open (activated) \Longleftrightarrow closed (deactivated) open (activated) \Longleftrightarrow closed (deactivated)

≠

unblocked \iff blocked (inactivated) unblocked \iff blocked (inactivated)

Experimental Detection of States

Early (lasting) assumptions:

- thermal (energy) fluctuations and ligation drive state shifts thermal (energy) fluctuations and ligation drive state shifts
- shift probability, but not exact time, knowable shift probability, but not exact time, knowable
- channel unchanged by ion current channel unchanged by ion current

Liebovitch, L. S.; Krekora. *Proceedings of the Institute for Mathematics and its Applications*.

Why consider intermediate steps?

Goychuk, Igor and Hanggi, Peter (2002) Proc. Natl. Acad. Sci. USA 99, 3552-3556.

$[\mathsf{A}] + [\mathsf{C}] \Longleftrightarrow [\mathsf{AC}_{\mathsf{int}}] \Leftrightarrow [\mathsf{AC}] + [\mathsf{B}] \Leftrightarrow [\mathsf{ABC}_{\mathsf{int}}] \Leftrightarrow [\mathsf{ABC}]$ k_1 k_{1} k_1 k-1 K_2 k_2^{\prime} k_2 k $_{2}^{^{\prime\prime}}$ K_3 k_{3}^{\prime} k_3 k_3' K_4 k_4 k_4 $\left(2\right)$ $\left[\mathsf{A}\right] +\left[\mathsf{C}\right] \underset{\mathsf{K}_4}{\leftrightarrow}\left[\mathsf{AC}_{\mathsf{init}}\right] \underset{\mathsf{K}_2}{\leftrightarrow}\left[\mathsf{AC}\right] +\left[\mathsf{B}\right] \underset{\mathsf{K}_3}{\leftrightarrow}\left[\mathsf{ABC}_{\mathsf{init}}\right] \underset{\mathsf{K}_4}{\leftrightarrow}$ $[A] + [C] \overset{\underline{k}_1}{\underset{\underline{k}_1}{\leftrightarrow}} [AC] + [B] \overset{\underline{k}_2}{\underset{\underline{k}_2}{\leftrightarrow}} [ABC]$ at equilibrium: (1) $(1) 0 = k_1[A][C] + k_2[ABC] - k_1[AC] - k_2[AC][B]$ $(2) \; 0 = \frac{k_2 k_1}{k_1+k_2}$ [A][C] + $\; \; \frac{k_3 k_4}{k_3+k_4}$ [ABC] - $\frac{k_1 k_2}{k_1+k_2}$ [AC] - $\; \frac{k_3 k_4}{k_3+k_4}$ [AC][B]

$(1) 0 = k_1[A][C] + k_2[ABC] - k_1[AC] - k_2[AC][B]$ $(2) \ 0 = \frac{k_2 k_1}{k_1+k_2}$ [A][C] + $\frac{k_3 k_4}{k_3+k_4}$ [ABC] - $\frac{k_1 k_2}{k_1+k_2}$ [AC] - $\frac{k_3 k_4}{k_3+k_4}$ [AC][B]

at equilibrium:

Adjustable Delay, ΔG Preserved

Adjustable Delay, ΔG Preserved

Hyperpolarization shortens delay

Initial delay is likely coupled to movement of voltages sensors (gating charges) on outer helices

top view, looking top view, looking into cell into cell

MacKinnon, R.; Campbell, E.; Long, S. *Science* (2005). 309, 897-903.

Future Work

Short lifetimes and low $\boldsymbol{\mathsf{k}}_{\rm off}$ values explain experimental difficulties of intermediate detection

Intermediate states affect energy landscape but not Intermediate states affect energy landscape but not equilibria or overall ΔG equilibria or overall ΔG

50% of current drugs target ion channels[6]. 50% of current drugs target ion channels[6].

Our understanding of channel dynamics and treatment Our understanding of channel dynamics and treatment discovery would be improved by: discovery would be improved by:

1. Determining Shaker K+ channel crystal structure in 1. Determining Shaker K+ channel crystal structure in closed conformation[3] closed conformation[3]

2. Models that describe mechanical coupling of gating 2. Models that describe mechanical coupling of gating charges to pore inactivation charges to pore inactivation

3. Describing selectivity mechanisms in Na+ and K+ 3. Describing selectivity mechanisms in Na+ and K+ channels **channels**

References

- 1. Goychuk, Igor; Hanggi, Peter (2002) *Proc. Natl. Acad. Sci.* 1. Goychuk, Igor; Hanggi, Peter (2002) *Proc. Natl. Acad. Sci.* USA 99, 3552-3556. USA 99, 3552-3556.
- 2. Cherry, J.; Adler, F, *J. Theor. Biol*. (2000) 203, 117-133. 2. Cherry, J.; Adler, F, *J. Theor. Biol*. (2000) 203, 117-133.
- 3. MacKinnon, R.; Campbell, E.; Long, S. *Science* (2005). 3. MacKinnon, R.; Campbell, E.; Long, S. *Science* (2005). 309, 903-908. 309, 903-908.
- 4. MacKinnon, R.; Campbell, E.; Long, S. *Science* (2005). 4. MacKinnon, R.; Campbell, E.; Long, S. *Science* (2005). 309, 897-903. 309, 897-903.
- 5. Kuo, C. *The Journal of Neuroscience* (1997). 17, 3436- 5. Kuo, C. *The Journal of Neuroscience* (1997). 17, 3436- 3444.
- 6. Coalson, Rob; Department of Chemistry. *Modeling Ion* 6. Coalson, Rob; Department of Chemistry. *Modeling Ion Transport through Biological Channels*. PowerPoint *Transport through Biological Channels*. PowerPoint Presentation: 2007.
- 7. Liebovitch, L. S.; Czegledy, F. P. *Ann. Biomed. Engr.* 20 (1992), pp. 7. Liebovitch, L. S.; Czegledy, F. P. *Ann. Biomed. Engr.* 20 (1992), pp. 517 -531.
- 8. Liebovitch, L. S.; Krekora. *Proceedings of the Institute for* 8. Liebovitch, L. S.; Krekora. *Proceedings of the Institute for Mathematics and its Applications*. *Mathematics and its Applications*.