Designing a Computational System to Predict Protein-Protein Interactions in Arabidopsis Thaliana

Lisa Gabor, Kamaldeep Singh

Mentor: Judith Klein-Seetharaman

Yanjun Qi

Department of Structural Biology

University of Pittsburgh

Overview

- Introduction and Background
- Purpose
- Methods
- Results
- Conclusions
- Acknowledgements

Introduction

- Predicting protein-protein interactions is one of the most challenging problems of the postgenomic era
- High-throughput methods can be used but are noisy and often yield false-positive/negative results
- Computational techniques can be employed to identify interactions between proteins

Purpose

To build a computational protein-protein interaction prediction system for *Arabidopsis* thaliana

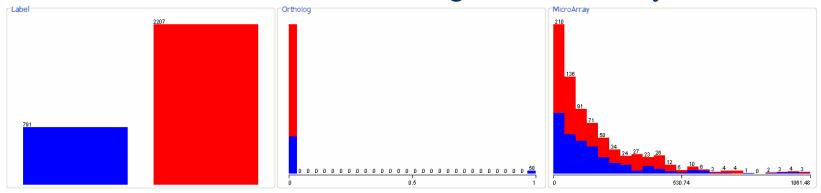
- High-throughput methods
 - Mass spectrometry and Yeast 2-Hybrid (Y2H), for example
 - Advantages and disadvantages
- Computational methods
 - Machine learning
 - Example

- Computational projects are based on experimental data available to the public
- Organism-specific databases provide downloadable files
 - The Arabidopsis Information Resource (TAIR)
 - InParanoid, NCBI, Gene Ontology (GO)

- ◆ TAIR is the database of choice for all *A*. *thaliana* information
 - Leader of *A. thaliana* research and funding
 - "Gold Standard" dataset
- ftp provides downloadable files
 - Files collected from sources like GO, NCBI, private research, etc.
 - Our project...

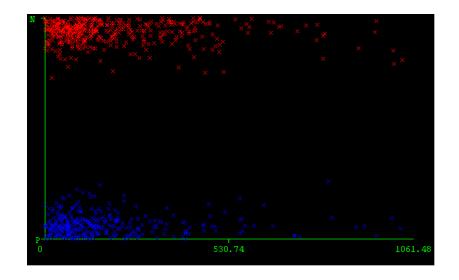
- These datasets could be used to make predictions about protein interactions
 - Machine learning
- Positive set—pairs of interacting proteins determined using experimental methods
- Negative set—randomly generated from the master list of all *A. thaliana* genes

- Feature sets
 - Used to generate arrays of "scores" that will eventually be combined to make a prediction based on some threshold value
 - For example: orthologs, microarray data


Results

- Results are determined from the score values assigned to each feature set
- Results are not facts!

Results


The three categories of data (from left to right):

- •Label (positive or negative)
 - •shows that the sample contained about 3000 protein pairs, approximately 800 of which were known interactions (positive)
- •Two feature sets—the ortholog and microarray data

Results

- Visualization of the microarray data
 - Blue "x"s represent the positive dataset
 - Red represent the negative.
- The x-axis is the absolute difference in average intensities (where gene expression data was available) of each protein in the given pair.

Conclusions

 The results at this stage are insufficient to make generalizations about classification methods

• For example:

Classifier	# Correct Instances	Percent Correct
J48	2265	75.5504%
Random Forest	2265	75.5504%
RandomTree	2265	75.5504%
Logistic	2265	75.5504%
SMO	2265	75.5504%

- Distinctions will be possible when there are more feature sets (ie: microarray data)
- With the addition of feature sets, conclusions will be possible regarding the classification methods as well as regarding protein interaction predictions

Acknowledgements

Ankur Agarwal

Acknowledgements

- Judith Klein-Seetharaman
 - Department of Structural Biology, University of Pittsburgh, PA
- Yanjun Qi
 - Language Technologies Institute, School of Computer Science, Carnegie Mellon University, PA