Rotational Model for Oscillating Waves Over the Surface of A Sphere

G. Bard Ermentrout, Ph.D; Frederick Doamekpor BBSI, Dept. of Computational Biology, Summer 2007 Department of Mathematics, University of Pittsburgh

Introduction

- Wave oscillations in coupled networks find themselves in different biological environments
- Ex: Brain Wave Activity, Calcium deposits on frog oocyte surfaces
- Oscillations can be captured on electroencephalograms (EEGs)

Wave Rotation in EEGs

Mathematical Background

 Weakly-coupled limit cycle oscillators reduced to scalar equations
Must Prove to analyze data

Research Goals

- Oscillators tend toward synchronous movement
- To create a model that has nonsynchronous solutions
- To determine how often these nonsynchronous solutions occur in differing models (n=20 and n=64 oscillators)

Dodecahedron: A Simple Model

Is a good model to start with:

- 20 points evenly distributed on surface
- Exactly 3 neighbors for each of the vertices

Dodecahedron: A Simple Model

	x1p=c+H(x8-x1)+H(x5-x1)+H(x2-x1)
	x1'=-x1
	x2'=c+H(x10-x2)+H(x3-x2)+H(x1-x2)-x1p
	x3'=c+H(x12-x3)+H(x4-x3)+H(x2-x3)-x1p
	x4'=c+H(x14-x4)+H(x5-x4)+H(x3-x4)-x1p
	x5'=c+H(x6-x5)+H(x4-x5)+H(x1-x5)-x1p
-	x6'=c+H(x15-x6)+H(x7-x6)+H(x5-x6)-x1p
	x7'=c+H(x17-x7)+H(x8-x7)+H(x6-x7)-x1p
	x8'=c+H(x9-x8)+H(x7-x8)+H(x1-x8)-x1p
	x9'=c+H(x18-x9)+H(x10-x9)+H(x8-x9)-x1p
	x10'=c+H(x11-x10)+H(x9-x10)+H(x2-x10)-x1p
-	x11'=c+H(x19-x11)+H(x12-x11)+H(x10-x11)-x1p
	x12'=c+H(x13-x12)+H(x11-x12)+H(x3-x12)-x1p
	x13'=c+H(x20-x13)+H(x14-x13)+H(x12-x13)-x1p
	x14'=c+H(x15-x14)+H(x13-x14)+H(x4-x14)-x1p
	x15'=c+H(x16-x15)+H(x14-x15)+H(x6-x15)-x1p
	x16'=c+H(x20-x16)+H(x17-x16)+H(x15-x16)-x1p
	x17'=c+H(x18-x17)+H(x16-x17)+H(x7-x17)-x1p
	x18'=c+H(x19-x18)+H(x17-x18)+H(x9-x18)-x1p
	x19'=c+H(x20-x19)+H(x18-x19)+H(x11-x19)-x1p
	x20'=c+H(x19-x20)+H(x16-x20)+H(x13-x20)-x1p

H(x)=sin(x)

Dodecahedron: A Simple Model

Theorem (from an earlier Ermentrout paper):

- Let H(x) be an odd periodic function:
 - H(x+2*pi) =H(x)
 - H(-x) = -H(x)
- If these functions are weakly coupled in a network, then there exists a real world solution to this function that is asymptotically stable
- So if we use this model, we know there exist non-synchronized asymptotically stable solutions

Platonic Solids

N=64 Model

- Difficult to evenly distribute 64 points about a sphere
- Neil Sloane-algorithm for finding coordinates of evenly distributed points on sphere's surface
- C program created to find a neighborhood of fixed radius around each point
- Generated connection matrix (5-7 neighbors)

Results

- Our goal was to find out if nonsynchronous solutions exist, and if so, how often they occur
- For the Dodecahedron Model, ~2% of the time non-synchronous solutions
- For the n=64 oscillator model, ~10% of the time non-synchronous solutions

Results (cont.)

Delete a column from BROWSER]			
Time	XO	X1	X2	Х3	Χ4	X5	X6	Х7
100	0	6,283185	6,283185	6,283185	5,403867e-16	6,283185	6,283185	6,283185
100	0	6,283185	6,283185	6,283185	6,283185	6,283185	6,283185	6,283185
100	0	6,283185	6,283185	6,283185	6,283185	6,283185	6,283185	6,283185
100	0	0,7742215	1,148241	1,947981	5,107681	2,843709	0,8313545	1,519726
100	0	9,024043e-16	1.010218e-15	1.703041e-15	8,157759e-16	1,332929e-15	1.11914e-15	1.563914e-15
100	0	6,283185	6,283185	6,283185	6,283185	6,283185	6,283185	6,283185
100	0	6,283185	6,283185	6,283185	6,283185	6,283185	6,283185	6,283185
100	0	6,283185	6,283185	6,283185	6,283185	6,283185	6,283185	6,283185
100	0	1,085755	1,613739	2,980651	4,972976	3,606308	0,6875429	2,489145
100	0	6.035822e-15	5.764986e-15	9,391871e-15	6,283185	4,601921e-15	5.371261e-15	8,890606e-15
100	0	6,283185	6,283185	6,283185	2,248231e-15	6,283185	6,283185	6,283185
100	0	7,50973e-15	4,895275e-15	8,420039e-15	6,283185	6,283185	6,101004e-15	9,56792e-15
100	0	4,095285e-15	4.466331e-15	6,935234e-15	6,283185	4,906239e-15	3,958816e-15	6.336197e-15
100	0	9,005454e-16	1.011865e-15	1,704152e-15	8,108106e-16	1,338943e-15	1,117993e-15	1,563258e-15
100	0	0,9579977	0,8454016	1,729876	5,891264	0,6696078	4,139472	2,782176
100	0	5,195515	5,378406	3,566091	0,5776515	5,782584	1,836276	2,700585
100	0	9,273564e-17	1.674152e-16	3.731395e-16	1,233485e-16	2,991039e-16	1,168475e-16	3.094867e-16
100	0	0,7742215	1,148241	1,947981	5,107681	2,843709	0,8313545	1,519726
100	0	6,283185	6,283185	6,283185	1,346695e-15	6,283185	6,283185	6,283185
100	0	6,283185	6,283185	6,283185	1.049936e-13	6,283185	6,283185	6,283185

Synchronous vs. Non-synchronous

Conclusions

 We found a successful model that produced non-synchronous solutions
We have an idea of how often these solutions occur for two different models

Future Work

Future research on this topic can focus on:

- Observing higher numbers of n oscillators on the sphere's surface
- Utilizing different periodic functions other than sin(x)
- Placing not only oscillators but excitable or other active elements
- Altering the connectivity of networks to see if this affects the probability of synchronization
- Addition of long range connections with delays to see its effect (Connections common in the brain)

References

 <u>Platonic Solids.</u> 24 July 2007. Wikimedia Foundation, Inc. 24 July 2005 <http://en.wikipedia.org/wiki/Platonic_solids>
<u>Fourier Series.</u> 24 July 2007. Wikimedia Foundation, Inc. 24 July 2005 <http://en.wikipedia.org/wiki/Fourier Series>

 <u>Brain Imaging and Brain Dynamics.</u> 22 October 2005. Theoretical Neuroscience Group. 5 July 2007 http://tng.ccs.fau.edu/projects/brain-imaging
<u>Spherical Codes.</u> 24 July 2007. AT&T Labs Research. 18 July 2007. http://www.research.att.com/~njas/packings/dim3/

Thank you. Any Questions?