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A recent study conducted by this
research group concluded that using the
correct combination of classifiers and
features, supervised machine learning could
be used to make predictions regarding
protein interactions based on direct and
indirect biological datasets for yeast cells.
We sought to repeat these results for
Arabidopsis thaliana, a model organism for
flowering plants.

To investigate systematically the utility
of different data sources and the way the
data is encoded as features for predicting
these interactions, we assembled a large set
of biological features and varied their
encoding.

The interactions that occur between
two proteins are essential parts of biological
systems. Through a combination of modern
robotics, data processing and control
software, liquid handling devices, and
sensitive detectors, high-throughput
methods allow a researcher to effectively
conduct millions of biochemical, genetic, or
pharmacological tests in a short period of
time. Through this process one can rapidly
identify active compounds, antibodies or
genes which modulate a particular
biomolecular pathway. The results of these
experiments provide starting points for drug
design and for understanding the interaction
or role of a particular biochemical process in
biology.

High-throughput methods can directly
detect the set of proteins that interact in a
variety of organisms, however the outcomes
often render incomplete results and show a
high propensity for false-positive and false-
negative rates.

The findings of this preliminary
research suggest that these methods and
framework for distinguishing protein-protein
direct, co-complex, and co-pathway
interactions can be extended for organisms
where little direct high-throughput
information is available, for example, in
humans or plants, such as Arabidopsis
thaliana.

The results at this stage are insufficient to make
generalizations about the different classification
methods available. As the project progresses,
additional feature sets will be added and the
advantages and disadvantages of each will become
more apparent and distinct. For example:
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The methods for this project are based upon a series of trials
explained in detail in the paper by Qi, Bar-Joseph, and Klein-
Seetharaman, which concluded that the Random Forest method of
classification yielded results with the lowest propensity for false-
positives and negatives. In order to make predictions about the
interactions of protein pairs, publicly available information was
used to “learn” the software.

Shown above is a visualization of
the microarray data where the blue
“x”s represent the positive dataset
and the red represent the negative.
The x-axis is the absolute difference
in average intensities (where gene
expression data was available) of
each protein in the given pair.

Generated input file for 
Weka software

Arabidopsis thaliana

Judith Klein-Seetharaman, Department of Structural 
Biology at the University of Pittsurgh

Yanjun Qi, Language Technologies Institute of the School 
of Computer Science at Carnegie Mellon University

Ankur Agarwal

The learning of the software was based on two main
datasets. The positive set defined the set of proteins already
known, through experimental methods, to interact. The negative
set was generated by a random sample of all possible
combinations of the master list of genes.

The feature sets were created using other
information about the genes of the organism,
including ortholog and gene expression data.
Using these, comparisons between datasets
were , in general, made to assign scores of
one (1) or zero (0) to the pairs for interacting
or non-interacting predictions, respectively.
This is not always the case, however, as in the
microarray data, real values of average
intensity were assigned to the pairs.

The set of scores and a label column (one for positive set,
zero for negative) were combined into an array that could then
be used as input into the Weka software, essentially making a
prediction about the regarding the probability of the interaction
of the two proteins in the specified pair.
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On the left is a sample
from the output of the
RandomTree classification
method.

The three histograms below represent
the three categories of data (from left
to right): the label (positive or
negative) and the two feature sets—the
ortholog and microarray data. The
label graph shows that the sample
contained about 3000 protein pairs,
approximately 800 of which were
known interactions (positive). In the
ortholog representation, only about 60
positive pairs received a score of one.
The height of the bars on the Y axis of
the microarray data on the right mean
the number of pairs, the X axis shows
the value range of the microarray
feature (the absolute difference of the
average intensities).

Classifier # Correct Instances Percent Correct

J48 2265 75.5504%

Random Forest 2265 75.5504%

RandomTree 2265 75.5504%

Logistic 2265 75.5504%

SMO 2265 75.5504%

The result value (75 percent corrected predicted)
indicates that even with just two features, it is
possible to predict the protein interaction pairs in AT.
This partially proves the applicability of extending the
method on this species. Adding additional features
would definitely achieve better performance.

•Because there is not a distinctive difference in the
patterns of the distributions of the microarray
visualization, this feature alone could not be used to
make an interaction prediction.

•Each of the classifiers gave the same results regarding
accuracy in predicting interacting pairs (74%). This is
due to the fact that there are not enough feature sets to
distinguish the training (see table below).


