
1

Statistical Mechanics 

Hagai Meirovitch

BBSI 2007



2

Program

(a) We start by summarizing some properties of basic physics 
of mechanical systems.

(b) A short discussion on classical thermodynamics –
differences from macroscopic mechanical systems.

(c) Derivation of statistical mechanics by demanding 
compatibility with classical thermodynamics.

(d) Statistical mechanics as a probabilistic theory.

(e) Examples.  
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Macroscopic Mechanical Systems are Deterministic

Refreshing some basic physics

Examples of forces F (F=|F|):

1) Stretching a spring by a distance x: F=-fx,  Hook’s Law
f - spring constant.

2) Gravitation force: F= kMm/r2 - m and M masses with 
distance r; k - constant. On earth (R,M large), g=kM/R2

F=mg

3) Coulomb law: F=kq1q2/r2    q1,q2 charges.
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Newton’s second law: F=ma - a acceleration 

Mechanical work W: if a constant force is applied along 
distance d, W=Fd (F=|F|). More general, W=�F.dx.

Potential energy: If  mass m is raised to height, h 
negative work is done, W = –mgh and the mass gains 
potential energy,Ep= -W = +mgh - the ability to do 
mechanical work:  when m falls dawn, Ep is converted into:
kinetic energy, Ek = mv2/2, where v2/2=gh (at floor).

A spring stretched by d: Ep= -W = f� xdx = fd2/2

In a closed system the total energy, Et = Ep+ Ek is constant but 
Ep/Ek can change; e.g., oscillation of a mass hung on a spring 
and distorted from its equilibrium position.
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SUMMARY

(1) The dynamical state of a mechanical macroscopic system
is deterministic, in principle, i.e., if the forces are known, and 
the  positions and velocities of the masses at time t=0 are 
known as well, their values at time t can in principle be 
determined by solving Newton’s equations, 

F=ma.
Simple examples: harmonic oscillator (a spring), a trajectory 
of a projectile, movement of a spaceship, etc. In some cases 
the solution might be difficult requiring strong computers.

(2) Ignoring friction, kinetic and potential energies and 
mechanical work can in general be converted without loss.
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Stability - a system of interacting masses (by some forces) 
tends to arrange itself in the lowest potential energy structure
(which might be degenerate) also called the ground state. The 
system will stay in the ground state if the kinetic energy is 
very small  - this situation defines  maximum order.

The larger the kinetic energy the larger is the disorder - in the 
sense that at each moment a different arrangement of the 
masses will occur (no ground state any more). Still, in 
principle, the trajectories of the masses can be calculated.
Two argon atoms at rest 
positioned at the lowest 
energy distance  ε −
interacting through 
Lennard-Jones potential. 
Microscopic system.
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T

Classical thermodynamics

A large system of N~1023 particles (blue) is surrounded by a very large 
(infinite) heat bath with absolute temperature T (green) T=Tsystem . The 
system can interact mechanically and thermally with the surroundings.

Example:    Ideal gas (dilute; high T)

Described by the equation of state:
PV = NkBT

V – volume
P – pressure
kB – Boltzmann constant

a very limited description – by only a few macroscopic parameters. 
The trajectories of particles are not considered.

This limited treatment makes thermodynamics a very general theory
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Mechanical work, equilibrium, and reversibility

P
V,T

ΔV=SdhIdeal gas in a container of V,T,P. If  the 
volume increases by dV the mechanical 
work is dW=PSdh =PdV and for ideal gas
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This is correct only if the piston is moved infinitesimally slowly to allow 
equilibration of the system at each step – i.e. the transformation is 
reversible.

if ΔV is moved fast there will not be time for the pressure to build at the  
piston (ΔV will be too dilute) Pfast< P and   dWfast< dW

Reversible work is maximal. 

The theory is developed at equilibrium
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Internal energy, heat, and the first law of thermodynamics

E - internal energy of the system; it is a state function defined up to an  
additive constant and is extensive (proportional to the system size)

q – the amount of heat (energy) absorbed by the system

W- mechanical work done by the system on the surroundings 

The first law of thermodynamics (conservation of energy):

E2-E1=ΔE = q – W

q is a disordered energy added to the system particles. A 19th-century 
question: can q be converted totally into mechanical work?

Answer – no (second law) but maximum W is obtained in reversible 
transformations (see later)
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Integration over any reversible path 
from 0, the state of the system at T=0 
to  b; T is of heat bath. T

dq
dS rev=

Entropy, and the second and third laws

It became necessary to define a measure for the randomness involved 
with heat.  T ~ P suggests that the randomness of particles increases with 
T hence with q. The measure is the entropy S: 

Third law: S(T=0)=0. Entropy is an extensive state function; dS is
effective at low T and decreases with increasing T.

Second law: ∫≥−≥ b
a T
dqaSbS

T
dqdS )()(

∫=
b

T
dq

bS 0
rev)(

Heat absorbed irreversibly (fast) is not spread over the system but is 
concentrated locally increasing the local T which decreases dq/T. 

In an isolated system (q=0 from outside) if a b S(b) ≥ S(a)
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Maximal entropy in spontaneous (irreversible) processes

S(b) ≥ S(a) means that in an isolated system S(final state) cannot be less 
than S(initial state); thus, the state of maximal entropy is the most stable.

For given E and V the values of other system parameters at equilibrium
are those that maximize the entropy δ(S)E,V ≥ 0.

Spontaneous processes always go in one direction of increasing entropy.

Spontaneous expansion of ideal gas (IG) at constant T (piston removed)

T V2                                                         T    V1

EIG depends on T but not on V (Joule experiment). No work is done and 
no heat comes from the bath; One can show, SIG=CvlnT +kBNlnV +const. 
where Cv= (∂E/ ∂T)V is the specific heat. 
ΔSIG=kBNln(V2/V1), i.e, 
the entropy (bath + system)
increases in an irreversible
process (Sbath remains unchanged).
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A reversible process

The volume of an ideal gas is increased reversibly, mechanical work is 
done and heat q is absorbed by the system from the heat bath. The 
entropy of bath is thus decreased by q/T (T unchanged).

Total change of entropy (in bath +system) is zero: ΔStot= ΔSIG- q/T = 0

T piston

If the piston is moved fast at each step the amount of work would 
decrease hence the total of heat q’ absorbed from the bath is q’<q and 

ΔStot= ΔSIG - q’/T > 0
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The Helmholtz free energy A(F)

First law: dE = dq - dW= TdS – PdV = d(TS) - SdT - PdV

dA = d(E-TS) = - SdT – PdV

A = E-TS – Helmholtz free energy. A = A(T,V,N) [S(E,V,N)]

Thus, if a system cannot exchange work with environment then

0 = W ≤ A(a) – A(b)             A(b) ≤ A(a)       A cannot increase. 

One can show that if a → b the maximal work W is gained in a reversible 
process and less otherwise,

W ≤ A(a) – A(b) = -ΔA

If A is minimum the system is in a stable equilibrium or δ(A)T,V ≤ 0 
(compare with δS). Thus, minimum A is a compromise between the 
tendency for maximum entropy and minimum potential energy.
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Classical thermodynamics – summary

In a mechanical many-body system one strives to calculate (analytically 
or numerically) the trajectories of the bodies. In thermodynamics a 
many-body microscopic system is described by a small number of 
macroscopic parameters; atomic degrees of freedom are ignored → the 
theory is general and highly applicable but provides limited information.. 
The parameters are related via partial derivatives,  

The notion of entropy expresses the disordered nature of heat, which 
cannot totally be converted into mechanical work.

Statistical mechanics is a probabilistic theory where classical 
thermodynamics is derived from a microscopic point of view (involving 
atomic forces, masses etc); thus, much more information is gained.
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Equilibrium statistical mechanics

A typical system is described below; examined from a microscopic point 
of view – non-rigorous treatment

TR

A system C of N (equal) molecules in a constant volume V is in thermal 
contact with a large reservoir (R) (heat bath) with a well defined 
temperature TR. At equilibrium (after a long time) energy is still 
exchanged between R and C but the average kinetic energy of a molecule 
of C is constant and equal to that in R leading to Tc=TR.

C
V

R TC
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However, in contrast to a macroscopic mechanical system,  there is no 
way to know the trajectories of the particles that are changed constantly 
due to collisions and the energy exchange between C&R, i.e. the random 
knocks of the R atoms on the interface. However, averaging Ek & Ep
along a very long trajectory leads to definite <Ek> and <Ep>, and thus for 
a snapshot of configuration of N particles→ ~N<Ek> and ~N<Ep>.

Relating kinetic energy to temperature: At high T, Ek is high - dominant, 
Ep is high– strong random knocks and collisions, large uncertainty 
related to trajectories        large disorder. At low T, Ek is low, the effect 
of the molecular forces significant - the system arranges itself in a low
potential energy state – low disorder. 

Therefore, a thermodynamic system at equilibrium cannot be 
characterized by the positions & velocities of its 1023 particles but only 
by the average values of several macroscopic parameters such as P, T, E
(internal energy) and entropy, S.
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For example, in measuring T the thermometer feels the 
average effect of many molecular states (xN,vN) of the tested 
system and for a long measurement all the microscopic states 
(xN,vN) are realized and affect the result of T.

Hence to obtain the average values of macroscopic parameters 
from microscopic considerations a probability density 
P(xN,vN) should be assigned to each system state (xN,vN) where 
(xN,vN) = (x1,y1,z1,x2,y2,z2, ….xN,yN,zN,vx1,vy1vz1…. vxN,vyNvzN) 
thus assuming that all states contribute.

The space based on (xN,vN)  is called phase space (with P a 
probability space, or ensemble)



18

Then a macroscopic parameter M is a statistical average,  

<M> = �P (xN,vN) M(xN,vN) d(xNvN).

We define the entropy S of a discrete and continuous system
(kB is the Boltzmann constant) as statistical averages,

S = <S> = -kB ΣPi ln Pi and

S = -kB�P(xNvN) lnP(xN,vN) d(xNvN)+

+ ln{const.[dimension (xNvN)]}

Notice, P is a probability density with dimension 1/ (xNvN) .
The constant is added to make S independent of (xNvN).



19

The problem – how to determine P. The correct P should lead 
to the usual thermodynamic properties. In thermodynamics an 
N,V,T system is described by the Helmholtz free energy A,         

A(T,V,N)=E –TS, 

which from the second law of thermodynamics should be 
minimum for a given set of constraints (see p. 13)

We shall determine P by minimizing the statistical free energy 
with respect to P.
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A =E-TS can be expressed as the average

A = <A(P)>= �P(X)[E(X)+kBTlnP(X)]dX +const.

X=(xN,vN). We take the derivative of A with respect to P and
equate to zero (variational calculus) the const. is omitted.

A’=� [E(X)+kBTlnP(X) + kBT P(X) /P(X)]dX=0

E(X)+kBT[lnP(X) + 1]=0  (for any X)

lnP(X) = - [E(X) + kBT]/kBT= = - [E(X)/kBT] +1

P(X) =const½exp[-E(X)/kBT]

The normalization is Q=� exp[-E(X)/kBT]dX
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i.e.,        PB(X)=exp[-E(X)/kBT]/Q

PB – the Boltzmann probability (density).   

Q – the canonical partition function.

The intgrand defining A (p. 20) is E(X)+kBTlnPB(X)

Substituting PB and taking the ln gives,

E(X)+kBT[- E(X)/kBT –lnQ]= -kBTlnQ

-kBTlnQ is constant for any X and can be taken out of the
integral of A. Thus (we ignore the const.),         

A=<E>-T<S>= - kBTlnQ +cont.
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In summary. Using the notion of temperature and assuming 
that the entropy is 

S = -kB�P(xNvN) lnP(xN,vN) d(xNvN)
PB was obtained by minimizing A (minimum at constant V,T -
from thermodynamics; see p. 13); we also obtained A= - kBTlnQ

Thermodynamic approach: The relation A= - kBTlnQ enables  
one calculating A from Q that is based on the microscopic 
details of the system.

In classical thermodynamics all quantities are obtained as 
derivatives of A. Hence, in statistical mechanics all these  
quantities can be obtained as derivatives of - kBTlnQ. 
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Probabilistic approach: in statistical mechanics a system is 
modeled by a probability space; thus, the macroscopic 
parameters can be obtained as expectation values & variances,

<E> = �PB(xNvN)E(xN,vN) d(xNvN)

S = -kB�PB(xNvN) lnPB(xN,vN) d(xNvN)
Using simulation, one can obtain even geometrical properties 
that are beyond the reach of thermodynamics, such as the end-
to-end distance of a polymer, the radius of gyration of a 
protein, and other  properties; they can be obtained without 
calculating Q, i.e. the values of Pi

B are not needed!!

The ensemble of configurations at constant V, T and N and their 
Boltzmann probabilities is called the canonical ensemble
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TR
T

N particles with velocities vN and coordinates xN are moving in 
a container in contact with a reservoir of temperature T=TR.
We have seen that the Helmholtz free energy, A is

A=E-TS= - kBTlnQ where

Q=� exp[-E(xN,vN)/kBT]d(xNvN))

Calculating Q

A system at equilibrium
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and  E(xN,vN)= Ek(vN) + Ep(xN)

E(xN,vN) is the Hamiltonian of the system (for Ep(xN) see p. 4).

If the forces do not depend on the velocities (most cases) Ek is 
independent of Ep and the integrations can be separated. Also, 
the integrations over the velocities of different particles and 
even over the components vx ,vy, and vz are independent. Thus, 
we first integrate over vx (denoted v) of a single particle.

To recall: the linear momentum vector p=mv; therefore, for 
one component:     

Ek= mv2/2 = p2/2m
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A useful integral (from table):

a
dxax π

∫
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The integral over the 3N components of the momentum 
(velocities) is the following product:

NTBmk 32 )( π
Q is (h is the Planck constant – see Hill p.74; >=VN),

∫
Ω

−
π

= Nd
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32

The problem is to calculate the configurational integral  
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The division by N factorial, N!=1�2 � 3…� N is required from 
quantum mechanical considerations because the  particles are 
independent and indistinguishable (however, introduced by Gibbs!, Hill 
p.62). Thus, each configuration of the N particles in positions x1,  x2, 
x3,….,xN can be obtained N! times by exchanging the particles in these 
positions. For example, for 3 particles there are 3!=6 possible 
permutations.

sites

Particles 1,2,3                      1 2 3
3                  2 1
3                  1 2
1                  3                  2
2                  1 3
2 3                  1

∫
Ω

− ....))(xexp( 222111 dzdydxdzdydx
TBk

NE
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Stirling approximate formula: ln N!¡ N ln (N/e)
The Helmholtz free energy A(N,V,T) is (const. of p.21 is lnh2)
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The velocities (momenta) part is completely solved; it 
contains m and h - beyond classical thermodynamics! The 
problem of statistical mechanics is thus to solve the integral. 
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Ideal gas
For an ideal gas, E = 0 (no interactions) hence Ø=VN trivial!!
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Thermodynamic derivatives of A of an ideal gas (properties 
~N or ~V are called extensive):

TNkPVVTNk
V
AP BB

NT
=⇒=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

−= /
,

TNk
T
T
A

TE B

NV

2
3)(

,

2 =
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

∂

∂
−=

Pressure:
Intensive variable
~N/V

Internal energy:
Extensive variable ~N
E=CvT+const. (thermo.)

E ~ T is the average kinetic energy (see later); each degree of 
freedom contributes (1/2)kBT. If the forces do not depend on 
the velocities, T is determined by the kinetic energy only. E is 
independent of V! (Joule experiment). 
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The specific heat CV is  independent of  T and V.
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The entropy is:

In thermodynamics, SIG=CvlnT +kBNlnV +const. (unknown). S contains 
microscopic parameters (e.g., m) not known in thermodynamics. S ~N →
extensive variable. V/N intensive! S is not defined at T=0 – should be 0 
according the third law of thermodynamics; the ideal gas picture holds 
only for high T.  S ~ lnT and E~T , both increase with T, but A=E-TS.
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Ideal gas results in probability space

Thus far, the thermodynamic properties were obtained from 
the relation between the free energy, A and the partition
function Q, A=-kBTlnQ using known thermodynamic 
derivatives. However, the theory is based on the assumption 
that each configuration in phase space has a certain probability 
(or probability density) to occur - the Boltzmann probability, 

PB(X)=exp[-E(X)/kBT]/Q

where X  xNvN is a 6N vector of coordinates and velocities 
(random variables). Therefore, thermodynamic properties (e.g. 
energy, enropy) are expectation values defined with PB(X). 
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For example, the statistical average (denoted by <>) of the 
energy is:

<E>= �PB(xN,vN) E(xN,vN) d (xNvN),
where E(xN,vN) is a random variable; we show <E>=
calculated as a derivative of A. For an ideal gas PB~Gaussian
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For two degrees of freedom the integral is:
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∫
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The entropy of an ideal gas can be obtained as a statistical 
average of ln Pi

B in a similar manner. 
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Entropy as a measure of order
For a discrete system,

S =<S> = -kB Σi Pi ln Pi
If the system populates a single state k, Pk=1 and S=0Ä there 
is no uncertainty. This never occurs at a finite temperature. It 
occurs for a quantum system at T=0 K.

On the other hand, if all states have the same probability, 
Pi=1/>, where > is the total number of states, the uncertainty 
about the state of the system is maximal (any state can be 
populated equally) and the entropy is maximal as well,

S= -kB ln >
This occurs at very high temperatures where the kinetic energy 
is large and the majority of the system configurations can be 
visited with the same random probability.
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In a continuum system, where the forces do not depend on the 
velocities (momenta), the velocities part of the partition 
function is completely solved and the problem is to treat the 
potential energy part defined over the coordinates, xN. 

For an ideal gas E(xN)=0 and the Boltzmann probability 
density over space (volume) is uniform - 1/V for a single 
particle and 1/VN for N particles leading to the total 
configurational entropy, ~NlnV (see p.31).

When E(xN)�0 one is interested mainly in the configurational
partition function denoted Z, where the (solved) momentum 
part is ignored,

Z= � exp[- E(xN)/kBT]dxN

Notice:  While Q is dimensionless, Z has the dimension of xN.



38

Also, 
Z= ��(E)exp[- E/kBT] dE

�(E) – the density of states around E; �(E)dE – the volume 
in configurational space with energy between E and E+ dE. 
For a discrete system [n(Ei) is the degeneracy of E]

Z = Ëi exp [- Ei/kBT] = Ël n(El) exp [- El/kBT] 
The thermodynamic functions are obtained from derivatives of 
the configurational Helmholtz free energy, F (or by averaging)

F = -kBTln Z
Calculating Z for realistic models of fluids, polymers, proteins, 
etc. analytically is unfeasible. Powerful numerical methods, 
e.g., Monte Carlo and molecular dynamics are very successful.
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Also,                          F=<E>-TS.
At low T the kinetic energy is low, the interactions (forces) are dominant 
holding the system close to the ground state - the state of lowest potential 
energy <E(XN)>. Thus, the positions of the particles are relatively well 
defined (ordered state) → significant configurational information → low 
entropy.

At high T, Ekinetic is large → strong movements of particles → high 
<E(XN)> → many states are visited → high disorder → high entropy.

At each T, F is a compromise between the tendencies of maximum S and 
minimum E where S(T) and E(T) are those that lead to minimum F; at 
high T, S is dominant and at low T E is dominant. Unlike a mechanical 
system, the trajectories are unknown. At low T PB ~1 for a tiny part of 
space; at high T, PB ~ same for all configurations.
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A simple example: N classical harmonic oscillators

They are at equilibrium with a heat bath of temperature T - a 
good model for a crystal at high temperature, where each atom 
feels the forces exerted by its neighbor atoms and can 
approximately be treated as an independent oscillator that does 
not interact with the neighbor ones.

Therefore,  QN=qN, where q is the partition function of 
a single oscillator. Moreover, the components (x, y, z)
are independent as well; therefore, one can calculate qx
and obtain QN=qx

3N.
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Macroscopic (mechanical) oscillator

The energy of a macroscopic oscillator (e.g., a mass hung on a
spring) is determined by its amplitude (the stretching distance);
the position x(t) of the mass is known exactly as a function of t.

Microscopic oscillator

The amplitude of a microscopic oscillator is caused by the 
energy provided by the heat bath. This energy changes all the 
time and the amplitude changes as well but has an average
value that increases as T increases. Unlike a macroscopic
mechanical oscillator, x(t) is unknown; we only know PB(x).
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Oscillators in thermal equilibrium with a heat bath of temperature T. A 
snapshot of  their amplitudes at time t. The average amplitude is well 
defined (or the average amplitude of one oscillator as a function of time)-

canonical ensemble picture.   
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The kinetic and potential energy (Hamiltonian) of  an 
oscillator are                        

p2/2m + fx2/2 

f is the force constant and the partition function is, q=qkqp
where qk was calculated before; � is the frequency of the 
oscillator.
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The average energy of one component (e.g., x direction) of an 
oscillator is twice as that of an ideal gas – effect of interaction. 
For N, 3D oscillators, E= 3NkBT - extensive (~N) and CV = 
3NkB - Dulong-Petit Law. The entropy is also extensive,

S = E/T- A/T=3NkB(1+ln [kBT/h�])

E and S increase with T. S is not defined at T=0

In mechanics the total energy of an oscillator is constant, fd2/2 
where d is the amplitude of the motion and at time t the 
position of the mass is known exactly.
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In statistical mechanics a classical oscillator changes its 
positions due to the force and the random energy delivered by 
the heat bath. The position of the mass x is only known with 
the Gaussian Boltzmann probability;

P(x) = exp[-fx2/2kBT]/qp
In principle x can be very large, but for a given T there is an 
average amplitude & in practice x fluctuates around this value.

When T increases the average energy (and its variance kB
2T2,  

both increase → the average amplitude increases and the 
position of the mass is less defined due to larger fluctuations 
(<x>=0 but <x2>=kBT/f); therefore, the entropy is enhanced. 

Notice: A classical oscillator is a valid system only at high T. 
At low T one has to use the quantum mechanical oscillator. 



46

From now on we ignore the velocities part and  mainly treat Z.
Probability space picture: The configurational space is viewed 
as a 3N dimensional sample space >, where to each “point” xN

(random variable) corresponds the Boltzmann probability 
density, 

PB(xN)=exp-[E(xN )]/Z

where PB(xN)dxN is the probability to find the system between 
xN and xN + dxN. The potential energy E(xN) defined for xN is 
also a random variable with an expectation value <E>
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The power of the probabilistic approach is that it enables 
calculating not only macroscopic thermodynamic properties 
such as the average energy, pressure etc. of the whole system, 
but also microscopic quantities, such as the average end-to-
end distance of a polymer. This approach is extremely useful 
in computer simulation, where every part of the system can be 
treated, hence almost any microscopic average can be 
calculated (distances between the atoms of a protein, its radius
of gyration, etc.). 

The entropy can also be viewed as an expectation value, where 
ln PB(xN) is a random variable, 

S = <S> = -kB�>PB(xN)ln PB(xN) dxN
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Likewise, the free energy F can formally be expressed as an 
average of the random variable, E(xN ) + kBT ln PB(xN),

F = - kBT lnZ =�>PB(xN)[E(xN ) + kBT ln PB(xN)] dxN

Fluctuations (variances)

The variance (fluctuation) of the energy is:

�2(E) = �>PB(xN)[E(xN ) - <E>]2 dxN = 

= <E(xN )2 > - <E(xN ) >2

Notice that the expectation value is denoted by <> and E is the 
energy. It can be shown (Hill p. 35) that the specific heat at 
constant volume is: Cv = (dE/dT)V = �2(E) /kBT2
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In regular conditions Cv = �2(E) /kBT2 is an extensive variable, 
i.e., it increases ~N as the number of particles N increases;
therefore, �(E) ~ N1/2 and the relative fluctuation of E
decreases with increasing N,

NN
N

E
E 1

=
><

σ ~)(

Thus, in macroscopic systems (N ~ 1023) the fluctuation (i.e., 
the standard deviation) of E can be ignored because it is ~1011

times smaller than the energy itself Ä these fluctuations are 
not observed in macroscopic objects. Like Z,<E> can be 
expressed,

<E> = � E(xN)PB(xN)dxN =� E�(E)PB(E)dE
where �(E)  is the density of states and PB(E) is the 
Boltzmann probability of a configuration with E.
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The fact that �(E) is so small means that the contribution to <E
> comes from a very narrow range of energies around a typical 
energy E*(T) ≈ <E> that depends on the temperature

E*
Therefore, the partition function can be approximated by 
taking into account only the contribution related to E*(T).

Z = ��(E)exp[- E/kBT] dE# fT(E*) = �(E*)exp[- E*/kBT] 
C

F= –kBTlnZ# E*(T)+k

�(E)
PB

BTln �(E*) = E*(T)-TS
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The entropy, -kBln �(E*) is the logarithm of the degeneracy of 
the most probable energy. For a discrete system 

Z = Ë n(Ei) exp [- Ei/kBT]  
where Ei are the set of  energies of the system and n(Ei) their 
degeneracies. For a macroscopic system the number of 
different energies is large (~N for a discrete system) while 
only the maximal term

n(E*) exp [- E*/kBT] 
contributes. This product consists of two exponentials. At very 
low T the product is maximal for the ground state energy, 
where most of the contribution comes from exp[- EGS*/kBT]  
while n(EGS*) ~ 1 (S=0). At very high T the product is 
maximal for a high energy, where n(E*) is maximal 
(maximum degeneracy Ä maximum entropy) but the 
exponential of the energy is small. For intermediate T:  
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fT(E) e-E*/k
B

T

n(E)

E*(T)
E

n(E)e-E/kBT
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The fact that the contribution to the integrals comes from an 
extremely narrow region of energies makes it very difficult to
estimate <E>, S and other quantities by numerical integration. 
This is because the 3N dimensional configurational space is 
huge and the desired small region that contributes to the 
integrals is unknown a-priori. 

Therefore, dividing the space into small regions (grid) would 
be impractical and even if done the corresponding integration 
would contribute zero because the small important region 
would be missed - clearly a waste of computer time.

The success of Monte Carlo methods lies in their ability to 
find the contributing region very efficiently leading to precise
estimation of various averages, such as <E>.
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xx1 x2 x3 xn

f(x)

� f(x)dx#Ëi f(xi)'xi 'xi= xi-xi-1

Numerical integration
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What is the probability to find the system in a certain energy 
(not xN)?

PB(E)=n(E)exp-[E/kBT]/Z

So, this probability depends not only on the energy but also on 
the degeneracy n(E). The relative population of two energies is 
therefore:
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Solving problems in statistical mechanics

The first step is to identify the states of the system and the 
corresponding energies (e.g., the configurations of a fluid 
and their energies). Then, three options are available:

1) The thermodynamic approach: Calculate the partition 
function Z Ä the free energy F=-kBTlnZ and obtain the 
properties of interest as suitable derivatives of F.

2) Calculate statistical averages of the properties of interest.

3) Calculate the most probable term of Z and the most 
dominant contributions of the other properties.
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Problem: N independent spins interact with a magnetic field H. 
the interaction energy (potential) of a spin is �H or -�H, 
depending of whether�, the magnetic moment is positive or 
negative. Positive � leads to energy -�H. Calculate the 
various thermodynamic functions (E,F,S, etc.) at a given 
temperature T.

2N stats of the system because each spin is or +1(-�) or -
1(�).

Potential energy of spin configuration i: Ei = -N+ �H +N-�H
or 
Ei = -(N-N-)�H + N-�H where N+  and N- are the numbers 
of +1 and –1 spins.  The magnetization of i is:

M N �H N �H
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Option 1: Thermodynamic approach

We have to calculate Z = Ëi exp-[Ei/kBT] ; i runs over all
the 2N different states of the system!

This summation can be calculated by a trick. The spins 
are independent, i.e., they do not interact with each 
other Ä changing a spin does not affect the other 
spins. Therefore, the summation over the states of N
spins can be expressed as the product Z=(z1)N where z1
is the partition function of a single spin (see 
oscillator!).
z1 = exp(-�H/kBT) + exp(+�H/kBT)=2cosh[�H/kBT]

h( ) [ ( )+ ( )]/2 Z [2 h(�H/k T)]N



59

F=-kBTlnZ =-kBTNln[2cosh(�H/kBT)]

Entropy:
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Magnetization: M=N+- N-
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Option 2: Statistical approach

Again we can treat first a single spin and calculate its average
energy.  z1 for a single spin is:

z1 = exp(-�H/kBT) + exp(+�H/kBT)= 2cosh[�H/kBT]

The Boltzmann probability for � spin is: exp[��H/kBT] / z1
The average energy is 

<E>1= [-�Hexp(+�H/kBT) + �Hexp(-�H/kBT)]/z1

= -�H {2sinh[�H/kBT]}/ {2cosh[�H/kBT]}=

= -�H tanh(�H/kBT) ; <E>= -
�HNtanh(�H/kBT)
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The entropy s1of a single spin is:

s1= -kB[P+lnP+ +P-lnP-], where P is the Boltzmann 
probability.

s1= -kB{exp[+�H/kBT][�H/kBT -ln z1] + 
exp[-�H/kBT][-�H/kBT -ln z1]}/z1=

=-kB{{�H/kBT [e+ - e-]/ z1- ln z1[e+ +e-]/ z1}= 

= -kB {{�H/kBT tanh[�H/kBT ] –ln z1} 
The same result as on p. 59.
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Option 3: Using the most probable term

E =-N+ �H + N-�H Ä E’= E/�H =-N++ N-
N = N++N-

N- = (N+ E’)/2     ; N+= (N- E’)/2

M = � (N+ - N-) E =-MH

The # of spin configurations with E,  W(E)=N!/(N+!N-!)
The terms of the partition function have the form,
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For a given  N, T, and H we seek to find the maximal term. We 
take ln fT(E), derive it with respect to E’, and equate the result 
to 0, using the Stirling formula, lnN! ¡ NlnN.
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The most probable energy, E* for given T and H is:

E*=-N�H tanh(�H/kBT)
and

M= N� tanh(�H/kBT)
As obtained before.
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degeneracy energy typical T spin configurations

1  (min. S=0) -N�H (min.)         T0 = 0              ����…��
�(H)

N -(N-1)�H+�H very low (T0) ����…��
= -N�H+2�H

N!/[(N-2)!2!]
=N(N-1)/2              -N�H+4�H              T2>T 0 ����…��

.                                                               k�
N!/[(N-k)!k!]         -N�H +2k�H Tk >Tk-1 ����

…��
.
.                                                    N/2     N/2

N! / [(N/2)!(N/2)!]          �H (N/2-N/2) high T ����. .��
��
(max. degeneracy                   =0

S = Nln 2) 
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Several points:

The entropy can be defined in two ways:
1) As a statistical  average: 

S = -kBËi PilnPi (Pi – Boltzmann) and

2) as: S# kB ln n(E*)

n(E*) - degeneracy of  the most probable energy. For large 
systems the two definitions are identical.

As a mechanical system the spins “would like” to stay in the 
ground state (all spins are up; lowest potential energy Ä most 
stable state), where no uncertainty exists (maximum order) Ä
the entropy is 0.
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However, the spins interact with a heat bath at a finite T, 
where random energy flows in and out the spin system. Thus, 
spins parallel to H (spin up) might absorb energy and “jump”
to their higher energy level (spin down), then some of them 
will release their energy back to the bath by returning to the 
lower energy state (�) and vice versa.

For a given T the average number of excited spins (�) is 
constant and this number increases (i.e., the average energy 
increases) as T is increased. 

The statistical mechanics treatment of this model describes 
this physical picture. As T increases the average energy (= 
E*(T) - the most probable energy) increases correspondingly.
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As E*(T) increases the number of states n(E*) with energy  
E*(T) increases as well, i.e., the system can populate more 
states with the same probability Ä the uncertainty about its 
location increases Ä S increases.

So, the increased energy and its randomness provided by the 
heat bath as T increases, is expressed in the spin system by 
higher E*(T) and enhanced disorder, i.e., larger ln n(E*) Ä
larger S(T).

The stability of a thermodynamic system is a “compromise”
between two opposing tendencies: to be in the lowest potential 
energy and to be in maximal disorder. At T=0 the potential 
energy wins; it is minimal Ä complete order S=0 (minimal). 
At T=� the disorder wins, S and E* are both maximal.
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At finite T the  stability becomes a compromise between the 
tendencies for order and disorder; it is determined by finding
the most probable (maximal) term of the partition function [at 
E*(T)]:

n(E*) exp-[E*/kBT] 
or equivalently the minimal term of the free energy,

E* + kBTln n(E*) = E*-TS*

Notice that while the (macroscopic) energy is known very 
accurately due to the small fluctuations, the configuration 
(state) is unknown. We only know that the system can be 
located with equal probability in any of the n(E*) states. 


