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1. Classification of differential equations

Differential equations, and their solution methods, are classified by both:

1. the degree of the highest derivative (i.e., the order)

2. whether or not the equation is linear or nonlinear —
if terms with the unknown are only to the first power, the equation is linear

Examples:

dx

dt
+ x = t , ⇒ First order linear

dx

dt
+ x3 = t , ⇒ First order nonlinear

m
d2y

dt2
+ b

(
dy

dt

)2
+ ky = 0 , ⇒ Second order nonlinear

d2ϑ

dt2
+
g

�
sinϑ = 0 . ⇒ Second order nonlinear
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It is possible to have more than one unknown, and that the equations for these
unknowns are linked together. This leads to systems of equations, such as

dx

dt
= ax − bxy ,

dy

dt
= −cy + dxy .

Finally, we make the distinction between ordinary and partial differential equa-
tions. The latter arise when there is more than one independent variable (such
as a spatial and a time variable) and partial derivatives are therefore required
to describe some situation. One example of this is the diffusion equation,

λ2
∂2v

∂x2
= τm

∂v

∂t
,

which (among other things) describes the spread of voltage in a passive dendrite.
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2. A simple RC circuit

R CI

++
V

Voltage V (units: volts) and current I (units:amps)

Resistor:
VR = IRR

Capacitor:

IC = C
dVC
dt

Kirchoff’s laws of circuits:

1. voltage drops around any closed loop must always add to zero

2. current can be neither created nor destroyed
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Differential equation & equivalent circuit

I =
V

R
+ C
dV

dt
with V (0) = 0 ,

or

dV

dt
+
V

RC
=
I

C
with V (0) = 0 . (1)

R CI

++
V

Choose values in the ballpark of those for a small cell:

R = 109Ω, C = 1 pF, and I = 100 pA

Steady-state solution (when dV/dt = 0):

V = IR = 100 pA ×109Ω = 100mV

Initial slope:
At t = 0, dV/dt = I/C = (100 pA)/(1 pF) = 100mV/ms

Time to steady state is (roughly) RI/(I/C) = RC = 1ms
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3. Direction fields and solution curves

One way to understand the behavior of such equations is to generate solutions
graphically. Equation (1) is a special case of the more general equation

dv

dt
= f (v , t) . (2)

Given an arbitrary point in the (t, v) plane, this allows one to find the slope
of the tangent dv/dt at that point. Any solution going through that point
must have the same slope.

In practice, one can draw the tangents throughout the (t, v) plane. The
graphical picture one constructs is then known as a slope or direction field.
One nice program that does this is dfield, a direction field program written in
Matlab by John Polking of Rice University. dfield also plots solution curves;
initial conditions can be entered merely by clicking on the appropriate point)
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Here’s how the direction field looks for

dV

dt
= 100− V with V (0) = 0 ,
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Note that the estimate of 1 ms as the time for the voltage to reach 100 mV
is not right, because this was based on the slope at V =0 (dashed line), and
the slope decreases as V increases.
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4. Separable equations

The simplest method of obtaining an explicit solution is when the equation is
said to be separable, which occurs when all of the dependent variables can be
separated from the independent variables so that each of them only appears on
one side of the equation:

dV

dt
= 100− V ⇒ dV

100− V = dt .

Both sides of this equation can now be integrated,∫
dV

100− V =
∫
dt , ⇒ − ln |100− V | = t +K ,

where K is a constant of integration. Some algebra then leads to

ln |100− V | = −t −K , ⇒ |100− V | = e−t−K = Ae−t ,
⇒ 100− V = Ae−t , ⇒ V = 100− Ae−t .

where A = e−K. (Can you explain why the absolute value signs were dropped?)
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The last result gives V as a function of t and is the solution we were seeking.
Because of the arbitrary constant A appearing in the solution, however, this is
known as a general solution. To find the particular solution that satisfies
the initial condition V (0) = 0, we solve for the A that makes this true. We
find A = 100, and therefore

V (t) = 100(1− e−t) .

Note that if the initial condition were V (0) = 100, then we would have V (t) =
100 for all time, i.e., the solution is just a constant, dV/dt = 0. Constant
solutions of a differential equation (the value(s) of V that make dV/dt = 0)
are known as steady states or critical points.

Exercise: Show for the general case

dV

dt
+
V

RC
=
I

C
with V (0) = 0

that the solution is
V (t) = IR

(
1− e−t/RC

)
.
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5. First-order linear equations

If in the previous example the applied current is not constant,

dV

dt
+
V

RC
=
I(t)

C
, (3)

then the equation is no longer separable. We can still solve the equation,
however. First of all, note that if I(t) ≡ 0, then the solution is (it’s separable)

V (t) = V0 e
−t/RC .

This suggests trying to solve the more general problem by using the transfor-
mation

V (t) = W (t) e−t/RC .

This particular method is known as variation of parameters. We expect the
right-hand-side in the equation for W (t) to be proportional to I(t), since when
I(t) ≡ 0 we must get the solution W (t) = V0. Doing the algebra, we get

dW

dt
= et/RC

I(t)

C
.
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Therefore

W (t) = V0 +

∫ t

0

eτ/RC
I(τ)

C
dτ

and

V (t) = V0e
−t/RC +

∫ t

0

e−(t−τ)/RC
I(τ)

C
dτ .

In general, this method will work on any first-order, linear equation, i.e.,

dy

dt
+ p(t)y = f (t) .

Shortcut: Multiple the equation by the integrating factor e
∫
p(t) dt; the

equation then becomes an exact derivative:

e
∫
p(t) dt dy

dt
+ p(t)e

∫
p(t) dt y =

d

dt

(
e

∫
p(t) dt y

)
= e

∫
p(t) dt f (t) .

Exercise: Find the solution of Eq. (3) if I(t) = I0 + I1 sinωt.
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6. Exponential and logistic population growth

The simplest model of population growth is a growth rate proportional to the
current population:

dP

dt
= k0P ⇒ P (t) = P0e

k0t .

Note that lnP = k0t+lnP0 is a linear function. Example: fit to U.S. population
growth between 1790 to 1910 shows exponential growth, but growth after 1910
is slower.
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Logistic growth:
dP

dt
= kP (M−P )

“Effective” growth rate: k(M − P ). Net growth rate decreases as population
increases (due to either real birth rate declining or death rate increasing. This
equation is separable; the analytic solution is (exercise)

P (t) =
P0M

P0 + (M−P0)e−kMt

For fitting, note that relative growth rate

1

P

dP

dt
= kM − kP

is a linear function of P . So if we compute the derivative approximately, using

dP

dt
(tk) =

P (tk+1)− P (tk−1)
tk+1 − tk−1

and plot (1/P )dP/dt versus P , we can determine k and M.
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Relative growth rate
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Fig. 3

U.S. population data, 1790 to 1910 — circles; best linear fit — (solid line).
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Best logistic fit
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Fig. 4

Logistic fit to U.S. data, 1790 to 1910 — solid line; actual population data,
1790 to 1990 — circles
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7. Qualitative behavior of solutions; critical points and stability

Sometimes it’s impossible find an explicit analytic solution. Nevertheless, much
can be learned about the qualitative behavior of solutions from the differential
equation itself.

Using logistic growth as an example, one thing that can be done is to plot the
derivative dP/dt versus the population P . For the logistic equation, this looks
like

dP/dt

P

0 M
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Actually, we really don’t even need to plot dP/dt; we can just indicate the size
of dP/dt by the length of the arrows drawn along the P axis:

P

0 M

This version is called a phase line. The points P = 0 and P = M are special:
at these values of P , dP/dt = 0. These points are called steady-states or
critical points of the differential equation.

From either graph, it’s clear that dP/dt > 0 for 0 < P < M, while dP/dt <
0 for P > M and P < 0. This means that P is increasing in the range
0 < P < M, while it is decreasing for P > M. Thus, all positive solutions tend
to the final steady-state P = M (negative population values don’t really make
sense). This asymptotic behavior can also be seen from the exact solution.
The population value M is known as the carrying capacity of the system,
and is the maximum sustainable population that this environment can support.
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P

0 M

The critical point P = 0 is said to be unstable since small perturbations away
from this critical point cause the solution to move farther away from it. (If one
is right at the critical point, of course, one stays there forever; any deviations
from this point are strongly amplified, however.) Similarly, the critical point at
P = 1 is said to be stable, since any perturbations about this point are rapidly
undone; deviations from a stable critical point are strongly damped.

Suppose we have a more general problem,

dP

dt
= F (P ) .

Finding the critical points and looking at the behavior near them is a good
tool for understanding how the solutions of a differential equation behave.
Determining critical points is relatively easy: one just solves for the zeros of
F (P ); such solutions Pc will have dPc/dt = 0.
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Stability is also relatively easy. If we let P = Pc + ΔP near the critical point,
where ΔP � Pc , then since by definition F (Pc) = 0,

F (P ) ≈ F (Pc) + F ′(Pc)ΔP = F ′(Pc)ΔP .
This is just the tangent line approximation to F (P ) near Pc .

dt
dP

P0 0.2 0.4 0.6 0.8 1

-0.1

0

0.1

0.2

ΔP

d(ΔP)/dt F(P)

MCN 2005 ODE & Linear Algebra Notes 20

Near Pc , then, we are left with

d

dt
(ΔP ) = F ′(Pc)(ΔP ) . (4)

This equation is linear, and is separable. The solution is

ΔP (t) = ΔP (0)eF
′(Pc)t .

If F ′(Pc) > 0 the exponential grows as t increases, and therefore the critical
point P = Pc is unstable; if F

′(Pc) < 0, then the exponential decays and the
critical point is stable.

This process is called linearizing around a critical point and is also known as
determining the linearized stability.

Exercise: Determine the critical points and their stability for the differential
equation

dP

dt
= −10P (P − 0.2)(P − 0.6)(P − 1.0) .
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8. Introduction to systems of differential equations

Now consider the system of differential equations

dx

dt
= x(a − x)− bxy (5a)

dy

dt
= y(c − y)− dxy , (5b)

where a, b, c and d are positive constants. Think of this as two logistic
populations that compete; the more y ’s there are, the harder it is for x to
increase its population, and vice-versus.

In this case, we generalize the phase line — we can use the x axis for indicating
how fast the x population is changing, and the y axis for indicating how fast
the y population is changing. We combine the x and y arrows into a single
vector, (dx/dt, dy/dt) that simultaneously indicates the rate at which both
populations are changing.

When we do this, we get what is known as a phase plane:
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x ’ = x(a−x)−bxy

y ’ = y(c−y)−dxy 
b = 0.5
d = 0.5

a = 1
c = 1 
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By following the arrows in the phase plane, we can get a fairly good idea about
the behavior of solutions.

Looking at the phase plane, we also see locations where the length of the
arrows are zero. At these locations, dx/dt = 0 and dy/dt = 0, i.e., the
solutions are constant. These again are steady states or critical points.
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For the example system, with a = 1, b = 1/2, c = 1 and d = 1/2, by solving
the differential equations with the derivatives set to zero,

x(1− x)− 1
2
xy = 0

y(1− y)− 1
2
xy = 0 ,

we find the critical points (0, 0), (1, 0), (0, 1), and (2/3, 2/3).

As for the phase line, we are also interested in the stability of these critical
points. From the phase plane, it appears that (0, 0), (1, 0), and (0, 1) will all
be unstable, and that (2/3, 2/3) will be stable (the two populations can stably
co-exist). We are going to have to develop some additional tools before we
can verify this.

Before doing so, however, we note that another graphical way to analyze the
behavior in the phase plane is to plot the nullclines: the curves in the phase
plane along which dx/dt = 0 and dy/dt = 0. In this case, these curves are
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x = 0, y = 0, 1− x − y/2 = 0 and 1− y − x/2 = 0:

dx/dt=0

dy/dt=0

dy/dt=0

dx/dt=0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

x ’ = x(a−x)−bxy

y ’ = y(c−y)−dxy 
b = 0.5
d = 0.5

a = 1
c = 1 

By definition, dx/dt or dy/dt changes sign when one crosses one of the
nullclines; this allows a quick graphical determination of the solution behavior.
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Exercise: determine the critical points for the system

dx

dt
= x(a − x)− bxy

dy

dt
= y(c − y)− dxy ,

with a = 1, b = 2, c = 1 and d = 2. What happens to the two competing
populations in this case?

9. Linearized stability near a critical point

As for the case of the phase line, the way to do stability is to linearize the
equations in the vicinity of the critical point. Suppose we have the system of
equations

dx

dt
= F (x, y) (6a)

dy

dt
= G(x, y) . (6b)
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The critical points in this case are just the points xc and yc that make the
derivatives vanish, i.e., we want

F (xc, yc) = 0 and G(xc, yc) = 0 . (7)

To find the critical points, one therefore has to solve these two coupled equa-
tions for xc and yc .

Let’s suppose that we’ve found the critical points, and we want to determine
the stability of one of them, say (xc, yc). (There may be more than one, of
course, but we examine their stability one at a time.) To do so, we look in the
vicinity of the critical point by letting

x = xc + Δx and y = yc + Δy ,

where Δx and Δy are both small.

When we then substitute these expressions into the differential equations, we
first have, since xc and yc are both constant,

dx

dt
=
d

dt
(Δx) and

dy

dt
=
d

dt
(Δy) .
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We also need to simplify the right-hand sides of the equation. For example,
we need F (x, y) = F (xc + Δx, yc + Δy). But note that the result for the
differential of a function of two variables tells us that

ΔF = F (xc + Δx, yc + Δy)− F (xc, yc) ≈ Fx(xc, yc)Δx + Fy(xc, yc)Δy ,
where

Fx ≡ ∂F
∂x

and Fy ≡ ∂F
∂y
.

In addition, recall F (xc, yc) = 0 because (xc, yc) is an equilibrium point, so

F (xc + Δx, yc + Δy) ≈ Fx(xc, yc)Δx + Fy(xc, yc)Δy .
Similarly, for G(x, y) near the critical point we have

G(xc + Δx, yc + Δy) ≈ Gx(xc, yc)Δx + Gy(xc, yc)Δy .
Thus, finally we obtain the linearized system of equations

d

dt

[
Δx

Δy

]
=

[
Fx Fy

Gx Gy

][
Δx

Δy

]
.
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(Aside: the matrix of partial derivatives,

A =

[
Fx Fy

Gx Gy

]
,

is called the Jacobian of the functions F and G.)

It’s important to note that the partial derivatives appearing in linearized system
of equations,

d

dt

[
Δx

Δy

]
=

[
Fx Fy

Gx Gy

][
Δx

Δy

]
= A

[
Δx

Δy

]
. (8)

are all constant, since they are all evaluated at the critical point (xc, yc).

Let’s get rid of the Δ’s by writing x1 = Δx and x2 = Δy . In addition, we will
write x for the vector with components x1 and x2, i.e.,

x =

[
x1
x2

]
.
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10. Introduction to the eigenvalue method

As an example, consider the two coupled differential equations

dx1
dt
= 4x1 − 5x2, dx2

dt
= 2x1 − 3x2 .

If we write

A =

[
4 −5
2 −3

]
then the equations become, in matrix form,

dx

dt
= Ax .

How do we find the solution of this equation? A scalar equation, such as

dx

dt
= ax , x = x0 at t = 0 ,

has the solution
x(t) = eatx0 .
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By analogy, we could guess the solution of the vector equation is

x(t) = eAtx0 ,

but we don’t know how to interpret the exponential of a matrix.

Therefore we will instead look for solutions of the form

x(t) = eλtv

where λ is a scalar and v is a constant vector, or equivalently[
x1(t)

x2(t)

]
= eλt

[
v1
v2

]
.

Note that the main idea is to separate the time dependence from the vector
nature of the equation: we use a scalar time dependent term in combination
with a vector constant. Since with this choice for x we have

dx

dt
= λeλtx ,
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we get

λeλtv = Aeλtv

⇒ Av = λv .
This is the fundamental equation for the eigenvalue λ and the eigenvector
v. We can also write this as

(A− λI)v = 0 ,
where I is the identity matrix (i.e., ones along the diagonal, and zeros else-
where), so that v must lie in the nullspace of the matrix

A− λI =
[
4− λ −5
2 −3− λ

]
.

For most values of λ the equation

(A− λI)v = 0
has as its only solution v = 0. It is only for particular values of λ that we
will have non-zero solutions, and these are the values of λ in which we are
interested (the term ‘eigen’ is just German for ‘special’ or ‘particular’).
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Note to have non-zero solutions for v the matrix A − λI must be singular. If
a matrix is singular, its determinant is zero. Therefore, we are looking for the
values of λ which make

det(A−λI) = 0 .
This is called the characteristic equation for the matrix A, and λ will be an
eigenvalue if and only if it is satisfied.

In our example

det(A−λI) =
∣∣∣∣ 4− λ −5
2 −3− λ

∣∣∣∣ = (4− λ)(−3− λ) + 10
= λ2 − λ− 2 = (λ+ 1)(λ− 2) = 0

so λ1 = −1 and λ2 = 2 are the two eigenvalues. To find the corresponding
eigenvectors, we go back to (A− λI)v = 0.
When λ = λ1 = −1 we get[

5 −5
2 −2

] [
v1
v2

]
=

[
0
0

]
⇒

[
5 −5
0 0

] [
v1
v2

]
=

[
0
0

]
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so v2 is free (i.e., undetermined) and

v = v2

[
1
1

]
.

We see that the eigenvectors are not uniquely determined; any multiple of [1 1]T

will work (any vector in the nullspace of A− λI works). Since the multiplier is
arbitrary, we are free to choose anything that is convenient. Here we will take

v1 =

[
1
1

]
.

(In mathematical terms, this vector is a basis for the nullspace, which is another
way of saying that any scalar multiple of it is also a solution.) It’s always good to
remember that we can always multiply an eigenvector by an arbitrary constant
and it will still be an eigenvector.

Similarly, when λ = λ2 = 2 we get[
2 −5
2 −5

] [
v1
v2

]
=

[
0
0

]
⇒ v = v2

[
5/2
1

]
⇒ v2 =

[
5
2

]
.
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Returning to the differential equation, we have therefore found two pure expo-
nential solutions

x1 = c1e
λ1tv1 = c1e

−t
[
1
1

]
and

x2 = c2e
λ2tv2 = c2e

2t

[
5
2

]
(the constants c1 and c2 are put in merely because any multiples of the eigen-
vectors v1 and v2 are also eigenvectors).

These two solutions are special, in that when the two components are in the
proper ratios with one another (as shown by the components of the eigen-
vectors), then the time dependence of both variables in the coupled system
becomes identical. For example, when x1 = x2, the differential equations

dx1
dt
= 4x1 − 5x2 ,

dx2
dt
= 2x1 − 3x2 ,
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become

dx1
dt
= −x1 ,

dx2
dt
= −x2 ,

so that x1 = x2 = c1e
−t. Similarly, when 2x1 = 5x2, the differential equations

become

dx1
dt
= 2x1 ,

dx2
dt
= 2x2 ,

so that x1/5 = x2/2 = c2e
2t. Looking for eigenvalues and eigenvectors is

equivalent to looking for combinations of the equations that produce such
simple time dependencies.

MCN 2005 ODE & Linear Algebra Notes 36

What do we do next? Well, because the systems of differential equations is
linear and homogeneous (i.e., there is no forcing function on the right-hand
side), the solutions obey the principle of superposition: if we have two
solutions, we can construct a new one by taking a linear combination of them.

Superposition: if x1 and x2 are solutions, then so is c1x1 + c2x2 (where c1
and c2 are constants). This follows since

d

dt
(c1x1 + c2x2) = c1

dx1
dt
+ c2
dx2
dt
= c1Ax1 + c2Ax2

= A(c1x1 + c2x2) .

How do we know we have enough solutions? Well, because we started with
two scalar equations, we have two derivatives. That means we expect two
integration constants (if we could integrate the two equations directly, we
would have directly obtained two added constants of integration). Thus, we
expect a solution with two arbitrary constants; we found two solutions using
eigenvalues and eigenvectors, so the linear combination of the two should give
the full solution.

(Note: it is possible that sometimes gets the same solution twice, rather than
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two different solutions. Two such solutions are said to be linearly dependent.
What we want are two solutions that are different, i.e., linearly independent. A
basic way to find out of two solutions are linearly independent is to try to apply
arbitrary initial conditions. If one can always solve for the constants given any
initial condition, then the two solutions are linearly independent.)

Back to the problem at hand, we had two eigenvalues and two eigenvectors.
Because the equation is linear and homogeneous any linear combination of the
two is also a solution, so that

x = c1e
λ1tv1 + c2e

λ2tv2

should be the general solution. Again, we have two arbitrary constants, c1 and
c2, and two initial conditions to satisfy, so the counting is right.
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Finally, we must satisfy any initial conditions, if we have them. Suppose at
t = 0 we want x(0) = x0 = [8 5]

T (this is really two conditions, of course)

⇒ c1x1 + c2x2 = x0

⇒ c1
[
1
1

]
+ c2

[
5
2

]
=

[
8
5

]

⇒
[
1 5
1 2

] [
c1
c2

]
=

[
8
5

]

⇒ c1 = 3 and c2 = 1 ,

⇒ x(t) = 3e−t
[
1
1

]
+ e2t

[
5
2

]
,

or equivalently,

x1(t) = 3e
−t + 5e2t ,

x2(t) = 3e
−t + 2e2t .
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11. A phase plane gallery

Let’s look at a generic linear system

dx

dt
= Ax where A =

[
a b

c d

]
.

To compute the eigenvalues, we want

det(A− λI) = det
[
a − λ b

c d − λ

]
= λ2 − (a+d)λ+ (ad−bc) = 0 .

The solution of this quadratic equation is

λ =
a+d

2
± 1
2

√
(a+d)2 − 4(ad−bc) = a+d

2
± 1
2

√
(a−d)2 + 4bc .

The rest of the details depend upon how the computation for the eigenvectors
goes, but the main qualitative behavior of the system, and how its phase plane
looks, depends upon the eigenvalues alone. We have only a few cases.
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Case 1: both eigenvalues real and positive: unstable node
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In this case, one eigenvalue is larger than the other, so it usually ends up
dominating the solution.
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Case 2: both eigenvalues real and negative: stable node
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In this case, the eigenvalue that is least negative ends up being the dominant
behavior (slowest decay).
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Case 3: one positive and one negative eigenvalue: saddle point
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A saddle point is unstable (usually this is not included in the name, however).
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Case 4: Complex roots, positive real part: unstable spiral
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The direction of the spiral is best determined by looking at a couple of specific
points in the phase plane (it’s harder to do it from eigenvectors).
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Case 5: Complex roots, negative real part: stable spiral
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Another name for a stable spiral is a spiral sink (unstable: spiral source).
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Case 6: Complex roots, zero real part: center
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This is sometimes termed neutrally stable. Technically speaking, the stability
is indeterminant (determined by terms neglected during the linearization).
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Example: Consider again the system of competing logistic populations

dx

dt
= x(1− x)− 1

2
xy

dy

dt
= y(1− y)− 1

2
xy .

Let’s consider the critical point at (2/3, 2/3). The Jacobian associated with
the linearization at this point is[

1− 2x − 12y −12x
−12y 1− 2y − 12x

]
=

[ −23 −13
−13 −23

]

The eigenvalues are

λ = −2
3
± 1
2

√
4

9
= −2
3
± 1
3
⇒ −1 and − 1

3

Since both are negative, this critical point is a stable node.

Exercise: do the rest of the critical points for this case. Also do them for the
case where the coupling coefficient is 2 instead of 1/2.
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12. Numerical methods

So, how do the numerical solution programs work? They use various algorithms
to simulate numerically an equation or a system of equations. These methods
are essential if one can’t solve an equation analytically; this is what happens
most of the time when one is doing applications. We will look at a few of the
simplest methods for getting numerical solutions.

Euler’s method

Suppose we have a general first-order differential equation,

dy

dx
= f (x, y) with y(x0) = y0 .

This will be assumed to be a scalar equation in what follows, but this is not
necessary. Systems of equations (and therefore second-order equations) can
be treated in exactly the same way.

Euler’s method, or the tangent line method, is the simplest way to get a
solution. The idea is that since one knows y = y0 at x = x0, from the
equation one knows dy/dx . Since one knows the initial slope, one can then
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use a tangent line approximation to get to a nearby point, say x = x0+h. This
gives

y(x0 + h) ≈ y(x0) + hf (x0, y(x0)) .
Now one knows y at a new point, so from the differential equation one knows
the slope there, so a new tangent line can be constructed to get to a new point
(say x0 + 2h), and so on.

To simplify the notation, define

xn+1 = xn + h or xn = x0 + nh ,

and write
yn = y(xn) .

Then the general procedure can be written

yn+1 = yn + hf (xn, yn) with y0 given.

Example:

Let’s use this with the simple example

dy

dx
= y , y(0) = 1
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which has the solution
y(x) = ex

to try to approximate e. If we use a stepsize of h = 1/2, we have

y1 = 1 + hy0 = 1 + 1/2 = 1.5

and then
y2 ≈ y(1) = y1 + hy1 = 1.5 + 0.5 ∗ 1.5 = 2.25

This is obviously not a very good approximation to e, as can be seen here:
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It’s clear from looking at the figure where the error is coming from in the ap-
proximation: the true solution curves away from the straight line approximation.

Of course, if we take a smaller step size h, the numerical approximation gets
better because the two curves are not allowed to get as far away from one
another before the slope is recalculated. For example, if we take h = 0.1, the
final result after doing the 10 steps is 2.593742460. The entire solution curve
is shown here:
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Let’s try to do this one more time, now taking h = 0.01. The final result after
doing the 100 steps is now 2.704813834. This is clearly starting to get close
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to the exact value, but as you can see a small stepsize is required when one
uses Euler’s method in order to get a reasonably accurate result. This is one
of the disadvantages of Euler’s method, and why people like to use “improved”
or more accurate methods.

As you can see from the above, one must take a relatively small step size h in
order to make the error made in the numerical solution small. Summarizing:

h approx. error error/h

0.1 2.593742460 0.124539368 1.245394

0.01 2.704813834 0.013466994 1.346699

0.001 2.716923932 0.001357896 1.357896

Roughly speaking, when one reduces the step size by a factor of 10, the error
is reduced by a factor of 10 as well. Thus, the error seems to be proportional
to the step size h.

One can get an idea of what the error should be by looking at the error made
in one step, called the local truncation error. Recall

yn+1 = yn + hf (xn, yn)
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and we want to compare this with the exact answer when one starts at yn at
x = xn, which we will write as y(x) (now we must distinguish yn which is the
approximation at xn, with y(xn), which is the true solution at yn). Using a
Taylor series approximation,

y(xn+1) = y(xn + h) = y(xn) + hy
′(xn) +

h2

2
y ′′(xn) + . . . .

Note also that using the differential equation

y ′(xn) = f (xn, y(xn)),

and if we want to we can evaluate y ′′(xn) as well by differentiating the differential
equation implicitly. Taking the difference, we then have

dn+1 = yn+1 − y(xn+1) = −h
2

2
y ′′(xn) + . . . .

Thus, we see that the error per step is of size h2. To numerically integrate an
equation from x = x0 to x = xf with N steps, we have h = (xf − x0)/N. If
we make an error of size h2 per step, and have N steps, then the total error
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will be of size

Nh2 =
xf − x0
h
h2 = (xf − x0) h .

Of course, there should be some constant multiplying this (coming from the
y ′′(xn)/2 multiplying the local error), but even so one can get an idea of the
trend of the error from the above formula: for fixed x0 and xf the error is
proportional to h, as expected.

Improved Euler method

Rather than taking smaller and smaller values of the stepsize h to get more ac-
curate numerical solutions to a differential equation, a better idea is to improve
the formula used to generate the numerical solution.

Consider the differential equation

y ′(x) = f (x, y), y(x0) = y0

and let y(x) denote its solution. By integrating the above equation from xn to
xn+1 we have

y(xn+1) = y(xn) +

∫ xn+1

xn

f (x, y(x)) dx .
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This can be thought of as just another way to write the differential equation.

We then get various approximate numerical solutions for the differential equa-
tion by using various numerical approximations for the integral. For example,
if we use the left endpoint to approximate the integral, we get Euler’s forward
method, or forward Euler:

yn+1 = yn + hf (xn, yn)

We can also use the right endpoint, which gives us backward Euler:

yn+1 = yn + f (xn+1, yn+1)

Note that this gives an implicit equation for yn+1 which must be solved for
with some method like a Newton iteration. Such methods are called implicit
methods, and because one must in general solve a nonlinear equation at each
step they generally viewed as difficult to use than explicit methods (i.e., ones in
which yn+1 only appears on the left-hand side of the equation). Nevertheless,
implicit methods often have advantages (namely, better stability properties) in
comparison to explicit methods.

Continuing the argument, we know that a trapezoidal approximation to an
integral is better than just using rectangles. Therefore, a more accurate method
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should result if we use the trapezoidal rule, which gives:

yn+1 = yn +
f (xn, yn) + f (xn+1, yn+1)

2
h

which is known as the midpoint method. This method is more accurate, but is
still implicit. An explicit method can be created by approximating yn+1 in the
above by the result obtained from the forward Euler method. This gives

yn+1 = yn +
f (xn, yn) + f (xn+1, yn + hf (xn, yn))

2
h .

This method is known as the improved Euler formula. Its local truncation error
is larger than the midpoint method, but both truncation errors are still of size
h3, which gives a total error in each case proportional to

(xf − x0) h2

(The improved Euler method has a larger error only because the constant mul-
tiplying the local truncation error is larger than that for the midpoint method.)
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Here are some numerical results for our simple example using the improved
Euler method:

h approx. error

0.1 2.714080847 0.004200982

0.01 2.718236863 0.000044966

0.001 2.718281376 0.000000453

As you can see, the error goes down by a factor of 100 each time the step
size h is reduced by a factor of 10. This is accurate enough that a graph of
the numerical solution using 10 steps (a stepsize h of 0.1) is already virtually
indistinguishable from the exact solution.

Before continuing, we note that the improved Euler method can also be written
as the two-step iteration

un+1 = yn + hf (xn, yn) ,

yn+1 = yn +
h

2
[f (xn, yn) + f (xn+1, un+1)] .
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In this form the first step is thought as the predictor and the second step is
thought of as a corrector. In addition, the whole process can alternatively be
written

k1 = f (xn, yn) ,

k2 = f (xn+1, yn + hk1) ,

yn+1 = yn +
h

2
(k1 + k2) .

Another way of improving Euler’s method is merely to use more terms of the
Taylor series to construct a one-step approximation that is better than the
tangent line. The Runge-Kutta method and its variants is probably used more
often than this method, however.
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The Runge-Kutta Method

The Runge-Kutta method can be thought of as an extended version of the
improved Euler method. The method is:

yn+1 = yn +
h

6
[k1 + 2k2 + 2k3 + k4]

where

k1 = f (xn, yn) ,

k2 = f (xn + h/2, yn + hk1/2) ,

k3 = f (xn + h/2, yn + hk2/2) ,

k4 = f (xn + h, yn + hk3) .

The method is somewhat difficult to motivate, and it is even more difficult to
determine the truncation error by expanding things using Taylor series because
of the large number of terms required. One way to understand the idea,
though, is to note that if going from one function evaluation per step (Euler)
to two function evaluations per step (implicit Euler) increases the accuracy
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of the numerical method from O(h) to O(h2), then adding two more should
increase it to O(h4), which is indeed the case. Once one gets this idea, one can
determine the details by considering four successive function evaluations each
of the form f (xn +αih, yn + βiki−1), where i = 1 . . . 4, and then substituting,
expanding, and picking the constants αi and βi to make the truncation error
as small as possible.

Another way to understand things is to note that in the case where f (x, y)
does not depend upon y , the above reduces to

yn+1 = yn +
h

6
[f (xn) + 4f (xn + h/2) + f (xn + h)]

which is Simpson’s rule. Simpson’s rule, of course, has a one-step error of
h5. It therefore is reasonable that the Runge-Kutta method should have a
local truncation error proportional to h5, and thus a total error proportional
to (xf − x0)h4. (Note that Edwards and Penney motivate the Runge-Kutta
method by starting with Simpson’s rule, but it is still not clear from their
explanation exactly where the particular constants come from.)
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The high accuracy of the method and relative ease of evaluation make it a very
popular method. For our simple example, here are the results:

h approx. error

0.1 2.718279744 2.08E-6

0.01 2.718281828 2.25E-10

0.001 2.718281828 2.26E-14

As can be easily seen, the error drops by a factor of 10,000 each time the step
size is reduced by a factor of 10.

Some difficulties with numerical methods

One of the problems of working with numerical approximations to the solutions
of differential equations is the fact that computers only do calculations with
finite precision. If one does not keep enough digits when doing calculations, the
accuracy of the approximation can be lost. In fact, since one makes an error
each time an arithmetic operation is done (addition, subtraction, multiplication,
etc.), it is possible that taking smaller and smaller step sizes only makes things
worse after a point: one makes more and more errors which add up to make
the final result worse.




