
I. Dynamics of living systems

• Understanding the dynamics at the molecular level. 
• Understanding the dynamics at the cellular level
• Filling the gap between these two levels 

Dynamics Dynamics FunctionFunction



Life’s complexity pyramid

Oltvai & Barabasi, Science 2002, 298, 763-764



“The complexity pyramid might not be specific only to cells”

Different levels of structural organization:
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Large structures

• Ribosomal functional complexes 
(Cate, Yusupov, Yusupova,Earnest & Noller, Science 1999, 285, 

2095).

• Complexes formed by several proteins, 
cascades of interactions



Computational models & methods for;

• Large assemblies, complexes of proteins
• Membranes and cytosolic fibrous systems
• Cellular pathways. Signaling & regulation of cell cycle





Bridging the gap between
Molecular and Cellular scales



What is the optimal (realistic, but computationally 
efficient) model for a given scale (length and time) of 
representation?

Which level of details is needed for representing 
global (collective) motions?

How much specificity we need for modeling large
scale systems and/or motions?

What should be the minimal ingredients of a 
simplified (reductionist) model? 



Computational challenges

• Realistic modeling of the space-time dependence of cellular 
processes

• Multiscale representations of structure/dynamics

• Extracting rules from microscopic simulations, for 
macroscopic approaches

• Bridging between continuous and discrete models



Systems Biology
There is not yet consensus on what systems biology actually is!

“The analysis of networks, regulation, how the things work from a
whole system point of view” Sauro

“physiology of cells” Adam Arkin

“mathematical modeling of biological systems” Schneider

Extensive usage of math and computations

An old concept that became popularAn old concept that became popular with 
the sequencing of the human genome
genomics, proteomics, metabolomics concepts
microarray technologies, instrumentation that allow for high 

throughput measurement of DNA,  RNA and proteins – global data sets



Numerous approaches have been used starting from the work of Jacob & Monod. On one end is to include as many details as 
possible. However, in many cases, the rates of reactions and the original concentrations are not known, nor are all the 
intermediate states and connectivities (state/block diagram); and the complexity of the system makes it difficult to study 
sensitivity to parameters and initial conditions. On the other extreme is the abstract approach taken by Glass and Kaufmann  
where  the individual components are taken to be Boolean variables (either on or off) and the behavior is completely determined 
by the topology of the interactions and the switching rules. While this greatly simplifies the models, the graded nature of 
responses is often important. 

Methods for simplifying and reducing complex models essentially exploit differences in time and spatial 
scales, when these scales are separable. Many of the systems are inherently stochastic and we utilize a master equation formalism  
where transition (or jump) probabilities between states control the probabilistic evolution of states. Closely associated are the 
hybrid models that involve stochastically forced differential equations (Langevin dynamics), or the time evolution of probability 
density functions (Fokker-Planck formalism). These approaches have been successfully used in other disciplines, but have not yet 
been exploited by theoretical biologists.  Deterministic differential equations for mean concentrations can be derived directly 
from the stochastic formulations. 

The differential equation description can be further reduced to produce simpler models that still capture the essential properties 
of the system. An example is the pseudo-steady state approximation for the reactants and products of the fast steps in serial 
reactions (e.g. Michealis-Menten mechanism). 

The solution of averaged differential equations in terms of the slow variables, as used in neural networks or weakly coupled 
oscillators, is another mathematical tool for model reduction. 

Mathematical tools such as PCA for decomposing the dynamics into its different modes, filtering out the noise or reconstructing
the dominant pathways are also useful. For example, the eigenvector corresponding to the zero eigenvalue of the transition matrix 
in the master equation formalism yields the steady state probabilities of the individual components of the system, while the 
eigenvector associated with the smallest eigenvalue extracts the slowest (or least probable) passage. 
.

Two challenges:

To ensure that the important details are not being neglected, 
to be able to construct simplified models that are quantitative, rather than just qualitative. 

Mathematical Modeling of Cellular Networks



Celllular pathways are usually described by simple
Mass-Action Kinetics

ATM signaling

http://www.biocarta.com/

P53 regulation



DNA damage signaling pathways



A shift from 

“ list of genes” or “proteins”

to

“structure” and “dynamics”



Three components of the computational approach:

System structure (network of gene interactions, 
biochemical pathways, etc.)

Properties of the components (reactivities, binding 
affinities, etc.)

System dynamics (sensitivity analysis, bifurcation 
analysis)



The systems biology markup language (SBML): a medium for 
representation and exchange of biochemical network models.
Bioinformatics. 19, 524-531, 2003.

Control and Dynamical Systems, MC 107-81, California Institute of Technology, Pasadena, 
CA 91125, USA. sysbio-team@caltech.edu

System = Genome, proteome, metabolome, etc.



Existing problems

1. Lack of information on biochemical networks or cell signaling 
and regulation pathways.
(Expression patterns indicate co-expressed genes, that are not 
necessarily co-regulated, or involved in the same pathway or 
function. Correlation between genes does not always provide 
information on causality

2. Define the scope and abstraction level of the model, which 
depends on the available knowledge. Lack of quantitative data 
on rate constants, concentrations)

3. Robustness is an essential property, which may be induced by 
adaptation, parameter insensitivity, negative feedback loops or 
feed-forward control mechanisms, structural stability or 
modularity.



Kirchhoff/connectivity matrix is analogous to the 
Transition Rate Matrix

of

Master Equation Formalism

Applications to macromolecular dynamics:
• Rotational dynamics of polymers (DRIS) 

(Bahar, Erman & Monnerie, Adv Polym Sci. 1994) 
• Folding dynamics of model proteins

(Ozkan, Bahar & Dill, Nature Struct Biol. 2001)



• Master Equation formalism
• dP(t) /dt = AP(t)

• Formal solution:
P(t) = exp {-At} P(0) = B exp {Λ-1} B-1 P(0)

(transition probability matrix)

How to analyze the time evolution of macrostates?



Classical kinetic modelling of protein folding/unfolding

Two-state transition

The simplest type of transition between states U and N is a two-state process, given by the scheme

The differential rate expressions holding in this case are

d[U]/dt = - kf [U] + ku [N]

d[N]/dt = + kf [U] - ku [N]

where [U] and [I] are the instantaneous (time-dependent) concentrations of the unfolded and folded 
conformations, respectively, and kf and ku are the folding and unfolding rate constants

U
kf

ku

N



Initial concentrations =  [U]0 and  [N]0. 

In folding experiments, we take [N]0 = 0, and the instantaneous concentration [N] is given by

[N] = [U]0 - [U]

such that the differential folding equation reduces to a non homogeneous, first order differential 
equation 

d[U]/dt = - (kf + ku) [U] + ku [U]0

The solution is:

[U] / [U]0 =  ku
kf + ku

  + kf
kf + ku

  exp { -(kf + ku)t} 



KUN =  
[N]∞
[U]∞

  =  kf
 ku

  

The equilibrium concentrations define the equilibrium constant for the folding reaction

The equilibrium constant is related to the free energyof unfolding by the equation

ΔGUN = - RT ln KUN

Several proteins have been observed to obey such a two-state transitions. 



Sequential transition from U to N
The transition from U to N has been shown in numerous examples above to proceed through the 

formation of one or more intermediates. 

Let us consider here the simpler case of a single intermediate. Let kXY designate the rate constant for the 
passage from state X to state Y. Using this notation, 

kUI

kIU

kIN

kNI

The set of equations for the differential change 

d[U]/dt
d[I]/dt

d[N]/dt
 = 

-kUI kIU 0
 kUI -kIU-kIN  kNI

0 kIN -kNI

  
[U]
[I]

[N]

In concise notation, 

dX(t)/dt = A X(t)
where X(t) is the vector of the instantaneous concentrations, and A is the matrix of rate constants, 
shortly referred to as rate matrix.  This matrix equation is similar in form, to a master equation, where 
concentrations are replaced by probabilities.



The set of coupled differential equations is conveniently found by matrix algebra methods, using 
the similarity transformation

A = B Λ B-1 

Here B is the matrix of eigenvectors of A, and Λ is the diagonal matrix of eigenvalues. The 
instantaneous concentrations/probabilities are controlled by

X(t) = B exp {Λt} B-1 X(0)

This equation may be rewritten in explicit notation for each state i (Xi = [U], [I ]or [N]) as

Xi(t) = ΣkΣj Bik exp { λkt}  B-1
kj Xj(0)

where the subscript denote the particular elements of the matrices, or vectors, and the 
summations are carried over all elements.  

The last equation is similar in form to the multiexponential form generally postulated for 
describing complex processes. 



Combination of computations, experiments and theory is 
vital
Modeling is an integral part of systems biology building 
the networks of interactions and examining its dynamics
Top-down approach (for modeling diseases, subcellular 
processes – apoptosis -, or entire ‘silicon cells’) 
most of the info/data needed for modeling is in the text of 
scientific literature, not in databases or equations
Has potential to impact drug discovery and development 
timeline ( focus on the connection between molecular and 
physiological)

Remarks



Size and Time Scales Applicable to 
Molecular & Cellular Control Mechanisms

fs ns   μs   ms s  min hr  
cm

mm
μm

nm

Å

Multicellular

Cellular
Subcellular

Multimolecular
Molecular
Atomic

Relevant Time ScaleSpatial Scale

Major challenges of the post-genomic era include a detailed understanding of 
structure/function relationships and complex interactions for proteins and their 
assemblies at various scales. Computational and mathematical models and 
simulations become increasingly important to delineate not just the average 
behavior of biological systems, but also the systems' variability and propensity 
to switch operating modes and/or to fail. 

The range of spatial and temporal scales over which molecular and 
cellular processes vary is enormous (Table). A variety of theoretical and 
computational methods have been developed for problems at various scales, 
and arguably the most mature algorithms underlie software at the lower and 
upper extremes.  At the lower level are molecular dynamics (MD) simulations, 
which provide information at the atomic scale.  In practice, however, their high 
computational cost precludes space and time scales beyond a few hundreds of 
residues and nanoseconds. The accuracy of MD simulations is limited by that 
of the adopted force field, and the simulations usually suffer from incomplete 
sampling of conformation space. At the higher level of cellular/multicellular 
processes, on the other hand, are methods based largely on empirical 
conjugate forces and flows, and involving the simultaneous solution of coupled 
ordinary or partial differential equations (ODEs or PDEs).  In space-free or 
(relatively) simple compartmental models of biochemical networks, these 
methods can address biological processes on the time-scale of minutes to 
hours. Spatial information can be incorporated therein, but at the cost of 
dramatically increased computation time, because the space must be 
subdivided into finite elements and the coupled PDEs must be solved for each.  
Additionally, stochastic effects, which in vivo may contribute to the robust 
nature of the organism, but may also account for switching into disease states, 
are usually lacking at this level.

Most of functional cell physiology lies in between the two spatio-temporal 
extremes outlined above, i.e., a finite group of molecules subject to complex 
structural and spatial arrangements are coupled via stochastic and/or directed 
interactions driving cellular machinery.  


