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A Short Introduction to Probability Theory

Hagai Meirovitch

Probability is one of the basic concepts in science, appearing 
in quantum mechanics, statistical mechanics, and all branches 
of statistics.

It is essential for analyzing any scientific data.

Unfortunately, we shall be able only to touch upon very few 
points of this important topic.

Emphasize:    Probability theory and computer simulation
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Experimental probability

Rolling a die n times. 

What is the chance to get an odd number?

n 10    50    100    400    1000    10,000 ….     
m 7    29      46    207      504      5,036 .…

Relative frequency: f(n)=m/n

0.7  0.58  0.46   0.517  0.5040  0.5036 ….   

f(n) → P = 0.5;   P = experimental probability
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While the exact P can never be obtained experimentally its 
notion and related properties are of great interest. To treat 
them efficiently we describe them within the framework of an 
idealized mathematical model - probability space.

Sample space

Elementary event (a possible outcome).

Tossing a coin – A happened, or B happened. 

Rolling a die - 1, 2, 3, 4, 5, or 6 happened.

Event: any combination of elementary events.

An even number happened → one of the following happened: 
(2,4,6); a number larger than 3 happened (4,5, or 6).
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The empty event: impossible event –¬

(2 < a number < 3).

The certain event – Ω (Coin: A or B happened).

Complementary event - Ā=Ω-A (1,2,3,4,5,6) - (2,4,6) = 
(1,3,5).

Union – (1,2,3)  (2,3,5) = (1,2,3,5).

Intersection – (1,2,4) ® (2,5,6) = (2) (common)
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A                                

B A®B = ¬ A®B = intersection 
red

+green
AB = A and B AB = whole
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Elementary probability space

• The sample space consists of a finite number n of points  
(elementary events) B.

• Every partial set is an event.

• A probability P(A) is defined for each event A.

• The probability of an elementary event B is P(B)=1/n.

• P(A)=m/n; m- # of points in event A.
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Properties of P

• 0 ≤ P(A) ≤ 1
• P(AB) ≤ P(A) + P(B)
• 6i P(Ai) = 1 (Ai, elementary events).

Examples: a symmetric coin; an exact die.

However, in the experimental world a die is not exact and its 
rolling is not random; thus, the probabilities of the elementary
events are not equal.
On the other hand, the probability space constitutes an ideal
model with equal P’s.
Comment: In general, elementary events can have different 
probabilities (e.g., a non-symmetric coin).
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Example:

A box contains 20 marbles, 9 white, 11 black. A marble is 
drawn at random. 

What is the probability that it is white?

Elementary event (EE): selection of one of the 20 marbles.

Probability of EE: 1/20
The event A – a white marble was chosen contains 9 EE,

P=9/20      This consideration involves the ideal
probability space; the real world significance: P is a 
result of many experiments, P=f(n), n��.
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A problem related to to the
experimental world (solution       
requires carrying out
experiments: probability 
from statistics)

modeling
(idealization)

analytical solution difficult

Probability Space Simulations in prob. space
(computer experiments:
probability (and other          
properties) from statistics

Answer by analytical 
techniques, if possible
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More  complicated examples:

What is the number of ways to arrange r different balls in n 
cells?

Every cell can contain any number of balls.
Each ball can be put in n cells Ä

##of# ways = n�n�n�….n = 
nr

nr= the number of words of length r (with repetitions)
based on n letters. A,B,C Ä AA, BB, AB, BA, CC, CA, AC, BC, CB   

=  32 = 9
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Permutations

# of samples of r objects out of n objects without repetitions 
(the order is considered) (n!=1½2½3½…. ½ n, 0!=1):

(n)r= n(n-1)…(n-r+1) = 1½2  ... (n-r)(n-r+1)…n = n!
1½2  …(n-r)                    (n-r)!

(n)n= n!

(3)2   (1,2), (1,3), (2,1), (2,3), (3,1), (3,2)     (1,3) � (3,1)

# of r (2) letter words from n (3) letters:AB, BA, CA, AC, BC, CB

= 6



12

Problem:

Find the probability that r people (r} 365) selected at 
random will have different birthdays?

Sample space: all arrangements of r objects (people) in 365 
cells (days) (EE) – their number = 365r Ä p(EE) = 1/365r

Event A: not two birthdays fall on the same day-

# of points in A = 365½364 ½……. ½(365-r+1)=(n)r

P(A) =   (n)r =    365!
365r (365-r)!365r
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Combinations

# of ways to select r out of n objects if the order is not 
considered.

# of combinations  = # of permutations / r!
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Problem: In how many ways can n objects be divided into k
groups of r1, r2,…..rk;  Ë rk= n without considering the order 
in each group but considering the order between the groups?
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Problem:   
23 chess players are divided into 3 groups of 8, 8, and 7 
players. What is the probability that players A, B, and C
are in the same group (event A)?

EE – an arrangement of the players in 3 groups.
# EE = 23!/(8!8!7!)
If A, B, and C in the first group the # of arrangs. 20!/(5!8!7!) 
etc. Ä

253
21

788
23

488
20

785
220A =+⋅=

!!!
!

!!!
!

!!!
!)(P
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Problem:   
What is the number of ways to arrange n objects
that r1 , r2 , r3 , … rk of them are identical, Ë ri= n?

If all are different, the number of permutations is n! because 
r1, r2 , ...rn are the same one has to divide n! by r1 ! r2 ! … rn !

6 6 24
5551112222    one permutation
5115251222    another permutation

!!...!
!#

krrr
n

21
ways =
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Problem:   52 cards are divided among 4 players. What is the 
probability that every player will have a king?

EE – a possible division of the cards to 4 groups of 13.

# EE 52!/(13!)4        (p.14)

If every player has a king, only 48 cards remained to be 
distributed into 4 groups of 12Ä # of EE(A) = 48!/(12!)4

P(A)=[4!48!/(12!)4]/[52!/(13!)4]
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Product Spaces

So far the probability space modeled a single experiment –
tossing a coin, rolling a die, etc. In the case of n experiments 
we define a product space:

Coin; two EE: 0 ,1
symmetric - P=1/2

1  2 ……. n      1 ………. n
EE (vector): (1,0,0,1,…,1);  (0,1,1,1,…,0); (…….);  # (EE)=2n

If the experiments are independent, P(EE)=(1/2)n
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Die: EE  are:   1, 2 , 3 , 4 , 5 ,6

1…………..n     1…………...n
EE= (1,5,2,4….,3,6); (2,3,2,5,….,1,1); (4,…….)…; #(EE)=6n

In the cases of independent experiments, P(EE) = (1/6)n
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Problem:
15 dice are rolled. Find the probability to obtain three times 
the numbers 1,2, and 3 and twice, 4, 5, and 6?

EE: all possible outcomes of 15 experiments, #(EE)= 615

#(A): according to formula on p. 16:  15!/[(3!)3(2!)3]

Ä

Also: 1 can be chosen in (15 ½14 ½13)/3! ways.
2 in (12 ½11 ½10) )/3! ways etc.

3315 236
15A

)!()!(
!)( =P
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Dependent and independent events

Event A is independent of B if P(A) is not affected if 
B occurred.

P(A/B)=P(A)

P(A/B) – conditional probability. For example, die:

Independent:
P(even)=1/2; P(even/square)=1/2 [ P({2,4,6}/{1,4})=1/2]

Dependent:
P(2)=1/6; P(2/even)=1/3

P(even/odd)=0, while P(even)=1/2 (disjoint)
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Bayes Formula

P(A/B) = P(A®B)/P(B); P(B/A) = P(A®B)/P(A);

P(A)>0;       P(B)>0                     A®B

)(
)()/()/(

B
AABBA

P
PPP ⋅

=

A=(2)   B=even (2,4,6) Ä P(A/B)=1/3. Using formula (line 2):  
P(B)=1/2; P(A®B)=1/6 Ä

31
21
61BA /

/
/)/( ==P Independency: P(A®B)= 

P(A)P(B)
1/6  ≠ 1/6×1/2

A B



23

If an event A must result in mutually exclusive events, 
A1,….An , i.e.,  A=A®A1 + A®A2 +… A®An then

P(A)=P(A1)P(A/A1) +……+P(An)P(A/An)

Problem: Two cards are drawn successively from a deck. 
What is the probability that both are red?

EE- product space: (r,r), (r,no), (no,r), (no,no)
A  first card is red {(r,r); (r,no)}
B   second card is red {(no,r); (r,r)}

P(A®B)=P(r,r)=P(A)P(B/A)=1/2·(25/51)
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Summary

We have defined experimental probability as a limit of relative 
frequency, and then defined an elementary probability space, 
where P is known exactly. This space enables addressing and 
solving complicated problems without the need to carry out 
experiments.

We have defined permutations, combinations, product spaces, 
and conditional probability and described a systematic
approach for solving problems. 

We shall now define another important tool- a function called 
random variable, which enriches significantly the usefulness 
of probability spaces.
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Random variables

For a given probability space with a set of elementary 
events{�}=>, a random variable is a function X=X(�) on the 
real line -� < X(�) < �.

Examples:

Coin: p - head; q- tail.  One can define X(p)=1;  X(q) =0.
However, any other definition is acceptable - X(p)=15 X(q) =2,
etc., where the choice is dictated by the problem.

Tossing a coin n times, the sample space is vectors (1,0,0,1…) 
with P(1,0,0,1…). One can define X=m, where m is the 
number of successes (heads) (not an one-to-one function!)
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Distribution Function (DF) or Cumulative DF

For a random variable X (-� < X(�) < �)

Fx(X) = P[X(�) } x]

Fx(X) is a monotonically increasing function

1       2         3         4           5        6 

1
5/6
4/6
3/6
2/6
1/6

Die: for x <1, Fx(X) = 0

for � 6, Fx(X) = 1
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Random variable of Poisson
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So far we have discussed discrete random variables.

Continuous random variable – if F(x) continuous and its 
derivative f(x) = F’(x) is also continuous. f(x)  is called the
probability density function;  f(x)dx is the probability between 
x and x+dx.
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The normal random variable 

The uniform random variable
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Expectation Value

X is a discrete random variable with n values, x1, x2 ,… xn.
and P(x1), P(x2), … P(xn), the expectation value E(X) is:

Other names are: mean, statistical average.
Coin:

X  1 ; 0 with P and 1-P.
E(X) = P½1 + (1-P)½0=P

Die: X  1, 2, 3, 4, 5, 6 with P =1/6 for all.

E(X) = (1/6)½(1+2+3+4+5+6)=21/6=3.5

∑=μ=
=

n

i
ii xxPXE

1
)()(
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Continuous random variable with f(x)
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E(X) is a linear operator: If X & Y are defined on same space

E(X+Y) =E(X)+E(Y) ;  E(CX)=CE(X) C= const.

6[X(�)+Y(�)]P(�) = 6 X(�)P(�) + 6 Y(�)P(�) �¯>

a b

1/(b-a)f(x)
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Variance
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Standard deviation: )()( XVX =σ
V(CX) = E(C2X2) - E2(CX) = C2E(X2) - [CE(X)]2 = C2V(X)
Ä V is not a linear operator.
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Example: a random variable with an expectation value but 
without a variance.

Independence: random variables X and Y defined on the same 
space are called independent if

P(X,Y)=P(X)P(Y)

Tossing a coin twice: (1,1), (0,1), (0,0), (1,0) – the 
probability of the second toss is independent of the first.
In a product space:  P(X1, X2

…., Xn)=P(X1)P(X2)…….P(Xn)
P(X1, X2

…., Xn) _ Joint probability
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Uncorrelated random variables

If X and Y are independent random variables [P(xiyj)=P(xi)P(yj)] 
defined on the same sample space Ä they are uncorrelated, i.e.  

E(X½Y)=E(X)½E(Y)

Proof: E(X½Y) = 6ij xiyjP(xiyj) = 6ij xiyj P(xi)P(yj)= 
=6i xiP(xi)½6j yj P(yj) = E(X)½E(Y)

X,Y independentÄ X,Y uncorrelated. The opposite is not 
always true. X,Y uncorrelated defined on the same sample 
space then

V(X+Y)=V(X) +V(Y)
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Arithmetic average
X1 , X2 , …… Xn are n random variables defined on the same 
sample space with the same expectation value �=E(Xi), then 
the arithmetic average:

n
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Notice:       is defined over the product space (x1, x2,…… xn)
with P(x1, x2,…… xn). is important in simulations.

X
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Variance of the arithmetic average

X1, X2, ….. , Xn are uncorrelated random variables with the 
same� and �2  Ä
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ÄWhile the expectation value of the arithmetic average is also 
�, the variance decreases with increasing n! 

The above result,                    is extremely important, playing a 
central role in statistics & analysis of simulation data. 

n
X σ
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Sampling

So far we have dealt with probability spaces (ideal world), where the 
probability of an elementary event is known exactly and probabilities of 
events A could be calculated. 

We defined the notion of a random variable (X) which is a function from  
the objects of a sample space to the real line, where the function can be 
defined according to the problem of interest. Cumulative distribution 
function and probability density function (for a continuous random 
variable) were defined. This enables one, at least in principle, to calculate 
expectation values E(X) and variances V(X) (and other parameters).

However, in most cases the probabilities in space are unknown and an 
analytical evaluation of the integrals E(X) and V(X) is unfeasible. Then 
one resorts to the “experimental” world on a computer – i.e., simulation 
where these parameters can be estimated by sampling techniques. 
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Examples where the probabilities are a-priori unknown

A. An uneven coin with unknown P and 1-P.     

Z
TkEP Bi

i
]/exp[B −

= ∑ −=
i

Bi TkEZ ]/exp[

Pi
B is unknown in most cases because Z is practically 

impossible to calculate. 

C. Parameters of the normal distribution

B. In statistical mechanics a real system is modeled by  a 
probability space where the elementary events are the system 
configurations i with potential energy Ei and Boltzmann 
probability Pi

B
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The normal (Gaussian) distribution is very important. (p. 28) -
defined by E(�) and V, which are not always known a-priori.
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and  its expectation value is 0, because f is symmetric & x is an 
odd function
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The variance is therefore:
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Here we used the integral:

Thus, a Gaussian is defined by only two parameters, E(X) and 
V(X) - in the above case, 0 and �2, respectively. In the general
case, f(x) ~ exp-[(x-� )2/(2 �2)]. � >0 and � defines the width
of the distribution.
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� = ⌦V

x
E=�=0

f(x)

The integral of f(x) from � - � } x}� + � provides ~ 68% of 
the total probability = 1; the integral over  � - 2� } x}� + 2�
covers ~95% of the total  area.

Unlike the ideal case (i.e., known probabilities) a distribution
might be known to be Gaussian but � and � are unknown. To 
estimate them one can sample x values from the distribution –
the smaller is � the larger the chance that x is closer to �.



41

Thus, while it is difficult to obtain the probability values, one 
can estimate E(�) and V by sampling with the corresponding  
distribution without the need to know its values!

One example: a coin with unknown p (1) and 1-p (0); tossing 
this coin will produce a sample of relative frequencies �(1)
�p, �(0)�1-p.

Another example: assume a container with hard spheres is 
shaken in space. While the spheres are distributed randomly 
we do not know the numerical value of this distribution.

Monte Carlo methods used on a computer enable one to 
sample with the Boltzmann prob. without knowing its value.
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To estimate an unknown E(X) in a rigorous and systematic 
way one uses the structure of the product space and the 
properties of the arithmetic average,                           Thus, 
if X1, X2,.., Xn are n equal uncorrelated random variables with
� and �2 then               and the variance decreases with n

....
n

XXXX n++
= 21

μ=)(XE
2

)(
n

XV σ
=

One can sample independently n times from this distribution 
generating one term (vector) (x1, x2, ….. , xn) of the product 
space. There is a good chance that (x1+ x2+ ….. + xn )/n will fall 
within one standard deviation, V1/2 of the correct�. The 
larger is n the smaller is V1/2 and the closer (x1+ x2+ .. + xn )/n
should be to�. For n�� the estimation becomes exact since
.

0→)(XV
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One example is a coin with unknown p (1) and 1-p (0), where
� =E(X) = p and σ2=p(1-p) are unknown a-priori.

One can toss this coin n times independently. The result of this 
experiment is a single vector [e.g., (1,0,0,1….1,0)] out of the 
2n vectors of the product space. Estimation of � is improved 
as n is increased due to the decrease of          .               

Also,         will decrease if σ2 is decreased. If p�0 or p�1, 
σ2=p(1-p) � 0 and even a single tossing experiment would 
lead (with high chance) to 0 and 1, respectively, and thus to 
the correct value of E(X).

)(XV

)(XV
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Thus,  to estimate � (and other properties) one has to move 
to the experimental world (sometimes on a computer) using 
the structure of  probability spaces (p.9). Notice again that 
while the value of P [or f(x)] is unknown, one should be able 
to sample according to P! (see the above example for the 
coin). 

This is the basic theory of sampling that is used in Monte 
Carlo and molecular dynamics simulations. However, notice 
that with these methods the random variables in most cases are 
correlated; therefore, to use the equation                  , the #

of samples generated, n’ should be larger, sometimes 
significantly larger than n, the number of uncorrelated samples 
used in the above equation. This topic will be discussed in 
more detail later.

2

n
XV σ

=)(
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Monte Carlo simulations – the Metropolis method

Markov chains
We have discussed n independent experiments of tossing a 
coin, with elementary events (outcomes) i and j, i.e., the 
probabilities pi and pj=1-pi of experiment t do not depend on 
the outcome of experiment t-1. Assume a different situation 
where pi(t) depends on the outcome at t-1.

t-1 t
i Ä p(j|i); p(i|i) p(j|i)+ p(i|i)=1

jÄ p(j|j); p(i|j)         p(j|j)+ p(i|j)=1

The p(i|j) are conditional probabilities and the process is 
called a Markov chain.



46

For simplicity we change the notation p(i|j)= p(j�i)= pji ,
where pji is a transition probability - the probability to obtain i
after having j in the previous experiment.

Assume now that only one experiment was carried out, such 
that at time 0 we have                                             - like for an 
independent coin. What is                of the next experiment?

1whereand 0000 =+ jiji PPPP
11and ji PP

jjjijij

jijiiii

pPpPP

pPpPP
001

001

+=

+=

or in a matrix form:
( ) ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

jj

ij

ji

ii
jiji p

p
p
p

PPPP 0011 ,,

where M is a stochastic matrix – all its components � 0 & the 
sum of probabilities in a line=1 ( )

M

11 =+=+ jjjiijii pppp ;
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One can ask: What is                   - the same procedure:22 and ji PP

( ) ( ) ( ) 2001122 MPPMPPPP jijiji ,,, ==

and in general, after n experiments:

( ) ( ) ( )
n

jj

ij

ji

ii
ji

n
ji

n
j

n
i p

p
p
p

PPMPPPP ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== 0000 ,,,

This derivation is performed in the probability space (a 
product space of n experiments) with transition probabilities. 
The significance of this result in the experimental world is the
following: If one repeats the series of n experiments many 
times always starting from              , the number of times i and 
j will be obtained at the nth experiment is proportional to -

, respectively.

00and ji PP

n
j

n
i PP and
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One can define Markov chains with a larger number of states 
(EE) than 2 defined for a coin. If the number of states is N, the 
stochastic matrix will be of size N�N.

The interesting question is whether for a large number of 
experiments, i.e., a long Markov chain, the set of probabilities

converge to values that are not changed for larger n and 
are independent of the initial set        . 

The answer is positive. For “well behaved” Markov chains 
(i.e., all states are irreducible and a-periodic – not explained 
here), one obtains a unique set of stationary probabilities            

{ }n
iP

{ }0
iP

i
n

in P π=∞→lim (independent of the initial        .{ }0
iP

{ }iπ

][;1;0 1 ∑=∑π∑ =π=π>π +

i
ij

n
i

n
j

i
iji

i
jii pPPp
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The existence of stationary transition probabilities is 
important. First, it is easy to carry out realizations of n 
experiments of a Markov chain using a computer (a realization 
is one term in the product space). One only has to know the 
matrix M of transition probabilities. A realization is obtained 
with the help of a random number generator.

The fact that         converges to       for a large n means that for
n’ > n the states are chosen with       - so, one can estimate 
expectation values defined with these stationary probabilities 
of random variables, such as the energy, from a single
realization of the Markov chain (one term of the product 
space) in the same way it is done in the case of independent 
sampling (e.g., a regular coin or a die).

{ }n
iP { }iπ

{ }iπ
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Two main points differentiate between independent and 
dependent sampling with a Markov chain. In an independent 
sampling of a coin, for example, all the experiments starting 
from the first one are considered, and due to independence the 
variance of any random variable decreases as �n= �/n1/2.

In the case of a Markov chain one has to ignore the first m
experiments, where the probabilities relax to their stationary 
values. Also, because the experiments are not independent the 
random variables are correlated. If the correlation disappears 
after l experiments the variance decreases slower than in an 
independent sampling, i.e, only as �n= �/(n/l)1/2.

So, why to use a Markov chain if it is inferior to independent 
sampling? The reason is that a Markov chain enables one to 
sample with the Boltzmann probability .iiP π=B
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Statistical mechanics 

Treating a system by statistical mechanics requires defining a 
probability space based on the Boltzmann probability,    , 
which in most cases cannot be calculated. 

However, using a Markov chain, system configurations can be 
sampled according to     without knowing its values (the 
Metropolis Monte Carlo method).

B
iP

B
iP
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The (NVT) ensemble – probability space - all possible configurations:
E1                               E2                            E3                                                        Ei

Ei – potential energy of config i (random variable); T- absolute temp, kB -
Boltzmann constant. The Boltzmann probability and partition function Z:

Z
TkEP Bi

i
]/exp[B −

= ∑

……

−=
i

Bi TkEZ ]/exp[

Pi
B is unknown because Z is very difficult to calculate. Most of the 

contribution to Z and Pi
B come from a very small region. We are 

interested, for example, in the average potential energy, 

∑=〉〈
i

i
B

i EPE
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With a Markov chain one can find the extremely small region 
in configurational space that provides most of the contribution 
to the partition function, & sample it.
This is the Metropolis Monte Carlo (MC) method described 
below first as applied to an 1d Ising model. Before discussing 
MC we describe an important tool for simulation – the random 
number generator.
Random number generators

Suppose a probability space consisting of two elementary 
events i and j with probabilities 0.2 and 0.8, respectively. We 
want to carry out n independent experiments (product space) 
using a computer. We use a program called random number 
generator that provides numbers within (0,1] distributed 
uniformly.
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For each experiment a new random number r is generated: 
If r } 0.2 event i is chosen; if r > 0.2, j is chosen.

Main Program
real*8 seed
seed=8957321.d0
.
x=random(seed) random(seed) is 0 < x}1
.
end
Function random(seed)
seed=mod(69069.d0*|seed|+1.d0,232)
random=seed/232                                                  232= 4,294,967,296.d0
return; end
mod(a,b) is the remainder of a/b, e.g., mod(17,5)=2
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The Ising model defines a probability space. The model is 
defined on a linear lattice of N sites. At each lattice site k there 
is a spin that can be in two states, σk = +1 or –1. 

+ - - - +- + + - - - - ……

So, there are 2N possible spin configurations (elementary 
events).  Two nearest neighbor spins, k and l interact with 
energy,   Lkl= -Jσk σl (J>0)    L++= L-- =-J ;L+-= L-+= 
+J.

The total energy of spin configuration i, Ei= ΣklLkl (i) is a 
random variable. The (Boltzmann) probability of i is,

Pi
B= exp[-Ei/kBT]/Z Z=Σi exp[-Ei/kBT] 

kB – Boltzmann constant; T - absolute temperature,  Z-
partition function (this model can be solved analytically).
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We return now to the MC method applied for simplicity to the 
1d Ising model at temperature T. We seek to generate a sample 
of configurations distributed with the Boltzmann probability.

Our mission is to define a Markov chain that its stationary 
probabilities are Boltzmannian,                                          .
Ising has 2N states (as compared to 2 states of a coin). We 
define transitions only between states that differ by a single 
spin. For example: + - +� + + + therefore instead of the 2N

possible transitions only N are  allowed.

Staying in state i we define the same trial transition probability  
(TP) Tij =1/N to go to any of the N allowed states j. For two 
spins the number of states is of 22=4 and a symmetric matrix
Tij =1/2 is obtained.

ZTkEP Bi
B

ii /]/exp[−==π

- - +
+ - -
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+    - - +
+    - +    -

+  +
- -
- +
+  -

½ ½
½ ½

½ ½
½ ½

Tij=Tji

For every state transition is defined into two states with TP=1/2.
The process starts from an arbitrary configuration i. A site k is  
selected with Tij =1/N - Reversing the sign of the spin on the 
selected site defines configuration j. Second stage: a decision 
should be made whether to accept j, i.e., to flip the spin on site 
k. This is done with pij which was suggested by Metropolis, 
Rosenbluth2 and Teller2 (1953).
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They suggested the following prescription which is also called 
the detailed balance condition

Notice that because of symmetry the ratio of the Tij’s is 1 and 
there is a freedom to determine the pij because they are defined 
up to their ratio.

Indeed, Pi
B are stationary. Using detailed balance one obtains

BBB
B

B
BB 1 ii

j
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i
ij

j
jji

j
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P
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j
Detailed balance is a sufficient condition for the Boltzmann 
probabilities to become stationary. Also, one has to verify that
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Tij is symmetric (very important) and the Markov chain is 
irreducible and aperiodic (which guarantees ergodicity). A 
popular set of pij is the following:

ijji
ji

ji

Bji
ij EEE

E
E

TkE
p −=Δ

≥Δ
<Δ

⎩
⎨
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Δ−
=

0
01

]/exp[

It is easy to see that pij/ pji = exp-[(Ej-Ei)/kBT], i.e., the detailed 
balance condition is satisfied.
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Performing the process is simple. One starts with an arbitrary 
configuration; using a random number, a site k is selected with 
Tij=1/N. The energy E(�k) of spin �k with its nearest neighbor 
spins is calculated together with E(-�k); if E(-�k)- E(�k)<0 the 
spin is flipped to -�k; in the other case a random number r is 
generated: if r} exp-[(Ej-Ei)/kBT], �k� - �k otherwise �k 
remains and the process continues.

Comments

(1) A very simple method – minimal configurational changes. 

(2) Configurations are selected with the Boltzmann 
probabilityÄ properties such as the energy, that are directly 
measured on the system can be estimated by the arithmetic 
average calculated over a sample of size n, 1/n6t Ei(t) .
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However, the value of Pi
B is unknown and it is difficult to 

obtain the absolute entropy in a direct manner because it 
requires, 1/n6t lnPB.

(3) The configurations are highly correlated which might 
need generating large samples.

(4) The MC method is a dynamical procedure that can model 
relaxation processes, for example.

(5) The above MC is very efficient for liquids, magnetic 
systems, and some MC versions also for polymers.

It fails close to a phase transition, dense systems, and 
compact proteins (see later).

i(t)
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Application of MC to other systems requires defining the basic 
configurational change & verifying that the detailed balance condition 
is satisfied. For a self-avoiding walk (SAW) on a square lattice (no 
energy) one can define a crankshaft move and a single monomer flip.

crankshaft
single monomer flip

For a Lennard-Jones liquid one defines a small box around a 
molecule. A trial move is chosen at random within this box.
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If the system is dense and the box around the molecule is 
relatively large the trial move in most cases will not be 
accepted because there is a high chance that the particle will 
“bump” another one leading to high energy, Ej���
exp-[(Ej-Ei)/kBT] � 0� no acceptance. Therefore, in this 

case the size of the box should be decreased until the 
acceptance rate is 30-40%.

However, very small moves will require a long simulation 
time to “scramble” the system, i.e., to obtain a reliable sample.
Therefore, if the system is very dense almost nothing will 
happen �MC becomes inefficient.

Thus, even though there is a mathematical guarantee that the 
simulation will converge to the stationary probabilities (Pi

B)
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The relaxation time can be very large and the correlations 
large as well. No theorem (criterion) exists which would tell 
us when convergence has been reached.

Therefore, one looks for an apparent stability in the averages. 
A practical measure is to carry out several such runs, starting 
from different configurations and using different random 
number sequences - to verify convergence.

Notice, there are many other versions of the Metropolis MC, 
where larger clusters are changed, different Tij and pij are 
defined, etc.
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Problems:
1) A die is rolled four times. What is the probability to obtain  

6 exactly one time?    (answer: 0.3858)

2) A box contains 6 red balls, 4 white balls, and 5 blue 
balls. 3 balls are drawn successively. Find the probability
that they are drawn in the order red, white, and blue if

the ball is (a) replaced, (b) not replaced.  (a: 0.0356; b:0.044)

3) What is the expectation value of m in the random 
variable of Poisson:

P(X = m)=zmexp(-z)/m!  (m = 0,1,2,…..).
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4) Show that the number of ways n objects can be divided 
into k groups of r1, r2,…..rk;  Ë rk= n without considering 
the order in each group but considering the order between 
the groups is

n!/(r1!r2!….rk!)  (see p. 14)

5) Two random variables X and Y are uncorrelated if
E(XY)=E(X)E(Y). Show that in this case:

V(X+Y)=V(X)+V(Y).
V is the variance.

6) Six passengers sit on a bus which visits 9 bus stops. What 
is the probability that two of the passengers will never get
off the bus in the same bus stop? (0.14)
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7) A die is rolled 36 times. What is the probability to obtain 
six times every number?

9) A person bought 6 tickets in a lottery of 30 tickets, which  
has 6 prizes. What is the probability that he wins at least
one prize?  (calculate the complementary event).0.227 

(0.773)


