

Quantum Chemistry

- Molecular Orbital Theory
 Based on a wave function approach
 Schrödinger equation
- Density Functional Theory
 - Based on the total electron density
 Hohenberg Kohn theorem
- Honenberg Ko
 Semi-empirical
 - Some to most integrals parameterized
 MNDO, AM1, EHT
- Empirical
 - All integrals are parameterized
 - Huckel method

LCAO

• A practical and common approach to solving the Hartree-Fock equations is to write each spin orbital as a linear combination of single electron orbitals (LCAO)

$$\psi_i = \sum_{\nu=1}^{K} c_{\nu i} \phi_{\nu}$$

- the ϕ_v are commonly called *basis functions* and often correspond to <u>atomic orbitals</u>
- K basis functions lead to K molecular orbitals
- the point at which the energy is not reduced by the addition of basis functions is known as the Hartree-Fock limit

• Property of Gaussian functions is that the product of two Gaussians can be expressed as a single Gaussian, located along the line joining the centers of the two Gaussians $e^{-\alpha_m r_m^2} e^{-\alpha_n r_n^2} = e^{-\frac{\alpha_m \alpha_n}{\alpha_m + \alpha_n} r_m^2} e^{-\alpha r_c^2}$

- the coefficient
- the exponent

$$\phi_{\mu} = \sum_{i=1}^{2} d_{i\mu} \phi_i \left(lpha_{i\mu}
ight)$$

L

- uncontratcted or primitive and contracted
- s and p exponents in the same shell are equal
- Minimal basis set
 - STO-NG
- Double zeta basis set
 - linear combination of a 'contracted' function and a 'diffuse' function.
- Split valence - 3-21G, 4-31G, 6-31G

• Polarization

- to solve the problem of non-isotropic charge distribution.
- 6-31G*, 6-31G**
- Diffuse functions
 - fulfill as deficiency of the basis sets to describe significant amounts of electron density away from the nuclear centers. (e.g. anions, lone pairs, etc.)
 - -3-21+G, 6-31++G

RHF vs. UHF

- Restricted Hartree-Fock (RHF) – closed-shell molecules
- Restricted Open-shell Hartree-Fock (ROHF)
 - combination of singly and doubly occupied molecular orbitals.
- Unrestricted Hartree-Fock (UHF)
 - open-shell molecules
 - Pople and Nesbet: one set of molecular orbitals for α spin and another for the β spin.

Electron Correlation

• The most significant drawback to HF theory is that it fails to adequately represent electron correlation.

$$E_{corr} = E^{NR} - E^{HF}$$

- Configuration Interactions - excited states are included in the description of an electronic state
- Many Body Perturbation Theory - based upon Rayleigh-Schrödinger perturbation theory

Configuration Interaction

- The CI wavefunction is written as
 - $\Psi = c_0 \Psi_0 + c_1 \Psi_1 + c_2 \Psi_2 + \cdots$ where Ψ_0 is the HF single determinant

 - where Ψ_1 is the configuration derived by replacing one of the occupied spin orbitals by a virtual spin orbital
 - where Ψ_2 is the configuration derived by replacing one of the occupied spin orbitals by a virtual spin orbital
- The system energy is minimized in order to determine the coefficients, c₀, c₁, etc., using a linear variational approach

Many Body Peturbation Theory

- Based upon perturbation concepts $H = H_0 + V$
- The correction to the energies are

$$E_{i}^{(0)} = \int \Psi_{i}^{(0)} H_{0} \Psi_{i}^{(0)} d\tau$$
$$E_{i}^{(1)} = \int \Psi_{i}^{(0)} V \Psi_{i}^{(0)} d\tau$$

$$E_{i}^{(2)} = \int \Psi_{i}^{(0)} V \Psi_{i}^{(1)} d\tau$$

$$E_{i}^{(3)} = \int \Psi_{i}^{(0)} V \Psi_{i}^{(2)} d\tau$$

- Perturbation methods are size independent
- these methods are not variational

Theoretical Model

Theoretical Model = Level of Theory + Basis Set

Level of Theory = HF, MP2, DFT, CI, CCSD, etc

Basis Set = STO-3G, 3-21G, 6-31G*, 6-311++G(d,p), etc

Geometry Optimization

• Derivatives of the energy

$$E(x_{i}) = E(x) + \sum_{i} \frac{\partial E(x)}{\partial x_{i}} (x_{i} - x_{i}) + \frac{1}{2} \sum_{i} \sum_{j} \frac{\partial^{2} E(x)}{\partial x_{i} \partial x_{j}} (x_{i} - x_{i}) (xj - x_{j}) + \cdots$$

- the first term is set to zero
- the second term can be shown to be equivalent to a force
- the third term can be shown to be equivalent to a force constant

- Internal coordinate, Cartesian coordinate, and redundant coordinate optimization
 - choice of coordinate set can determine whether a structure reaches a minimum/maximum and the speed of this convergence.
 - Internal coordinates are defined as bond lengths, bond angles, and torsions. There are 3N-6 (3N-5) such degrees of freedom for each molecule. Chemists work in this world. Z-matrix...
 - Cartesian coordinates are the standard x, y, z coordinates. Programs often work in this world.
 - Redundant coordinates are defined as the number of coordinates larger than 3N-6.

Frequency Calculation

- The second derivatives of the energy with respect to the displacement of coordinate yields the force constants.
- These force constants in turn can be used to calculate frequencies.
 - All real frequencies (positive force constants): local minimum
 - One imaginary frequency (one negative force constant): saddle point, a.k.a. transition state.
- From vibrational analysis can compute thermodynamic data

Molecular Properties

- Charges
 - Mulliken
 - Löwdin
 - electrostatic fitted (ESP)
- Bond orders
- Bonding
 - Natural Bond Analysis
 - Bader's AIM method
- Molecular orbitals and total electron density
- Dipole Moment
- Energies
 - ionization and electron affinity

Energies

- Koopman's theorem
 - equating the energy of an electron in an orbital to the energy required to remove the electron to the corresponding ion.
 - · 'frozen' orbitals
 - · lack of electron correlation effects

Dipole Moments

- The electric multipole moments of a molecule reflect the distribution of charge.
 - Simplest is the dipole moment $\mu = \sum q_i r_i$
 - nuclear component

$$\mu_{nuclear} = \sum_{A=1}^{\infty} Z_A R_A$$

 $\mu_{electronic} = \sum_{\mu=1}^{K} \sum_{\nu=1}^{K} P_{\mu\nu} \int d\tau \phi_{\mu} \left(-r\right) \phi_{\nu}$

Molecular Orbitals and Total **Electron Density**

• Electron density at a point r

$$\rho(r) = 2\sum_{i=1}^{N/2} |\psi_i(r)|^2 = \sum_{\mu=1}^{K} P_{\mu\mu}\phi_\mu(r)\phi_\mu(r) + 2\sum_{\mu=1}^{K} \sum_{\nu=\mu+1}^{K} P_{\mu\nu}\phi_\mu(r)\phi_\nu(r)$$

- Number of electrons is
 - $N = 2\sum_{i=1}^{N/2} \int dr \left| \psi_i \left(r \right) \right|^2 = \sum_{\mu=1}^{K} P_{\mu\mu} + 2\sum_{\mu=1}^{K} \sum_{\nu=\mu+1}^{K} P_{\mu\nu} S_{\mu\nu}$
- Molecular orbitals - HOMO
 - LUMO

Bonding

• Natural Bond Analysis

- a way to describe N-electron wave functions in terms of localized orbitals that are closely tied to chemical concepts.
- Bader
 - F. W. Bader's theory of 'atoms in molecules'.
 - This method provides an alternative way to partition the electrons among the atoms in a molecule.
 - Gradient vector path
 - bond critical points
 - charges are relatively invariant to the basis set

$$\begin{split} \phi_{\mu}^{\prime} &= \sum_{\nu=1}^{K} \left(S^{-1/2} \right)_{\nu \mu} \phi_{\nu} \\ q_{A} &= Z_{A} - \sum_{\mu=1; \mu \text{ on } A}^{K} \left(S^{1/2} P^{1/2} \right)_{\mu \mu} \end{split}$$

Summary of Methods

TABLE 16.2 Homolytic Bond Dissociation Energies (kJ/mol)

Molecule (bond)	Hartree-Fock Limit	Experiment	Δ
Ethane (H,C-CH,)	276	406	-130
Methylamine (H ₄ C-NH ₅)	238	389	-141
Methanol (H,C-OH)	243	410	-167
Methyl fluoride (H,C-F)	289	477	-188
Hydrazine (H ₂ NNH ₂)	138	289	-151
Hydrogen peroxide (HO-OH)	-8	230	-238
Fluorine (F-F)	-163	184	-347

Sur	nmary	of Resu	lts	
Relative E	nergies of Str	uctural Isome	ers (kJ/m	ol
Reference Compound	Isomer	Hartree-Fock Limit	Experiment	
Acetonitrile	Methyl isocyanide	88	88	
Acetaldehyde	Oxirane	134	113	
Acetic acid	Methyl formate	71	75	
Ethanol	Dimethyl ether	46	50	1
Propyne	Allene	8	4	
	Cyclopropene	117	92	8
Propene	Cyclopropane	42	29	21
1.3-Butadiene	2-Butyne	29	38	12
	Cyclobutene	63	46	1
	Bicyclo[1.1.0]butane	138	109	12

Summe	u y 01 100	Summary of Results						
Summary of Results								
APIE 16 6								
Bond Distances	(Å)							
Molecule (Bond)	Hartree-Fock limit	Experiment	Δ					
Ethane (H ₁ CCH ₃)	1.527	1.531	-0.004					
Methylamine (H,C-NH,)	1.453	1.471	-0.018					
Methanol (H,C-OH)	1.399	1.421	-0.022					
Methyl fluoride (H ₃ CF)	1.364	1.383	-0.019					
Hydrazine (H2N-NH2)	1.412	1.449	-0.037					
Hydrogen peroxide (HO-OH)	1.388	1.452	-0.060					
Fluorine (F-F)	1.330	1.412	-0.082					
Ethylene (H,C=CH,)	1.315	1.339	-0.024					
Formaldimine (H,C==NH)	1.247	1.273	-0.026					
Formaldehyde (H,C=O)	1.178	1.205	-0.030					
Diimide (HN=NH)	1.209	1.252	-0.043					
Oxygen (O=O)	1.158	1.208	-0.050					
Acetylene (HC==CH)	1,185	1.203	-0.018					
Hydrogen cyanide (HC==N)	1.124	1.153	-0.029					
Nitrogen (N=N)	1.067	1.098	-0.031					

~ ****	imarv of F	Results	
	,		
TABLE 16.	7		
Symmetri	ic Stretching Freque	encies in Diat	omic
and Cmall	Delvatornia Melea	ales (am-1)	onne
and Sman	Polyatonne Molec	uies (cm ~)	
Molecule	Hartree-Fock Limit	Experiment	4
Lithium fluoride	927	914	J
Fluorine	1224	923	30
Lithium hydride	1429	1406	1
Carbon monoxide	2431	2170	20
Nitrogen	2734	2360	37
Methane	3149	3137	1
	3697	3506	19
Ammonia	4142	3832	31
Ammonia Water			
Ammonia Water Hydrogen fluoride	4142	4139	30

Summary of Results							
		2					
AILE 16.13		COLUMN TRANSPORT		-			
Proton Affi	nities of Nit	rogen Bases F	telative to the	Proton Affii	nity		
of Methyla	Hartree Fock		BRAT	MP2			
Baie	3-216	4-310*	6310*	6-31G*	Experiment		
		- 86	-42	-42	-38		
Armeninia							
Ammonia Aniliat	-38	-17	-21	-13	-10		
Arrenderia Aciliat Methylamine	-39	-17	-21	-13 0	- 10		
Arrensteia Aniliae Methylamine Dinarthylamine	-38 0 29	-17 0 29	-21 0 25	-13 0 23	-10 0 27		
Armensteria Antilion Methylamine Diseasthylamine Pyridine	-38 0 29 17	-17 0 29 29	-21 0 25 25	-13 0 25 13	-80 0 27 29		
Arenvera Acellice Methylamine Disaethylamine Pychline Tronethylamine	-78 0 29 17 45	-17 0 29 27 46	-21 0 25 25 38	-13 0 25 13 16	-10 0 27 29 46		
Armonia Aniliae Methylamine Diraethylamine Pyridine Trimethylamine Diraethylamine Diraethylamine	-38 0 29 17 46	-17 0 29 29 29 46 71	-21 0 25 25 38 99	-13 0 25 13 98 54	- 10 0 37 29 46 60		
Aremonia Anihae Methylamine Diraethylamine Pyridine Trinethylamine Dirathicyclocitane Quinochlore	-38 9 39 17 48 67 79	-17 0 29 29 46 77 84	-21 0 25 25 38 99 75	-13 0 25 13 58 54 71	-10 0 27 29 46 60 75		

Summar	ry o	f Re	sult	S		
Conformational Energy in Hydrocarbons (kJ/mol)						
Low-Energy/ High-Energy Conformer	3-21G	6-31G*	6-31G*	6-31G*	Experime	
anti/gauche	3.3	4.2	3.3	2.9	2.80	
skew/cis	3.3	2.9	1.7	2.1	0.92	
trans/gauche	11.3	13.0	15.1	10.9	12.1	
chain/twist-boat	27.2	28.5	26.8	27.6	19.7-25	
equatorial/axial	7.9	9.6	8.8	7.9	7.32	
equatorial/axial	27.2	25.5	22.2	23.4	22.6	
equatorial/axial	26.4	27.2	25.1	23.8	23.0	
	1.9	2.3	1.3	0.9		
	Summan ional Energy in Hy High-Energy High-Energy schecks man/gatche chait/bish-boat equatorializaid equatorializaid equatorializaid	Summary o ional Energy in Hydrocarboo www.energy High-Seerg conformer 210 anti/patche anti	Summary of Resident constraints ional Energy in Hydrocarbons (kJ/mm Meb-Energy Meb-Energy 113 113 114 113 113 113 113 113 113 113 113 113 114 115 115 116 117 118 119 11	Summary of Result ional Energy in Hydrocarbons (kJ/mol) March Energy in Hydrocarbons (kJ/mol) March Energy in Hydrocarbons (kJ/mol) March Energy in Hydrocarbons (kJ/mol) Interference Jata (b) ansurgenche 3.3 4.2 3.3 ansurgenche 11.3 10.0 15.1 chaitrevis-boar 27.2 28.5 26.8 equatorializait 7.9 4.6 8.8 equatorializait 27.2 25.5 22.2 26.4 27.2 25.5 22.2 10 2.3 13 15	Summary of Results sional Energy in Hydrocarbons (kJ/mol) Image Conference 1/210 Astronomic Conference 1/210 Astronomic Conference 1/210 Image Conference 1/210 Astronomic Conference 1/210 Image Conference 1/210	

- Electrostatic potentials
 - the electrostatic potential at a point \mathbf{r} , $\phi(\mathbf{r})$, is defined as the work done to bring a unit positive charge from infinity to the point.
 - the electrostatic interaction energy between a point charge *q* located at **r** and the molecule equals $q\phi(\mathbf{r})$.
 - there is a nuclear part and electronic part

$$\phi_{nucl}(r) = \sum_{A=1}^{M} \frac{Z_A}{|r - R_A|} \qquad \phi_{elec}(r) = -\int \frac{dr' \rho(r)}{|r' - r|}$$
$$\phi(r) = \phi_{nucl}(r) + \phi_{elec}(r)$$

	Water Example							
Ge	eome	etry						
		Z	-MAT	RIX (ANGSTROM	S AND	DEGREES)		
CD	Cent	Ator	n N1	Length/X	N2	Alpha/Y N3	Beta/Z	J
1	1	н						
2	2	0	1	0.989400(1)				Energy
3	3	н	2	0.989400(2)	1	100.028(3)		
Pop	Population Analysis							
,	Population analysis using the SCF density.							
A	Alpha occ. eigenvalues20.25226 -1.25780 -0.59411 -0.45987 -0.39297							
,	Alpha virt. eigenvalues 0.58175 0.69242 Condensed to atoms (all electrons): Total atomic charges						Total atomic charges:	
	2 0	0.25	3760	7.823081 0.2537	760			1 H 0.165300
	3 Н	-0.04	5250	0.253760 0.6261	190			2 O -0.330601
								3 H 0.165300

GaussView -	- Water Example
1000 00 0000 000 </th <th></th>	
	D C211/11/11/11/00/00 Descent Descent<
Red On Red On	Anner (Spin
Sa	

I

Limitations, Strengths & Reliability

- Limitations

 - Inimitations
 Requires more CPU time
 Can treat smaller molecules
 Calculations are more complex
 Have to worry about electronic configuration
 Strengths

 - No experimental bias
 Can improve a calculation in a logical manner (e.g. basis set, level of theory,...)
 - Provides information on intermediate species, including spectroscopic data
 - Can calculate novel structures Can calculate any electronic state
- Christiania any vectorian state
 Reliability
 The mean deviation between experiment and theory for heavy-atom bond lengths in two-heavy-atom hydrides drops from 0.082 A for the RHF/STO-3G level of theory to just 0.019 A for MP2/6-31G(d).
- A for MP2/6-31G(d).
 Heats of bydrogenation of a range of saturated and unsaturated systems are calculated sufficiently well at the Hartree-Fock level of theory with a moderate basis set (increasing the basis set from 6-31G(d) to 6-31G(d,p) has little effect on the accuracy of these numbers).
 Inclusion of electron correlation is mandatory in order to get good agreement between experiment and theory for bond dissociation energies (MP2/6-31G(d,p) does very well for the on-heavy-atom hydrides).
 http://www.chem.swin.edu.au/modules/mod5/limits.html
- •

Summary

- What can you do with electronic structure methods?
 - Geometry optimizations (minima and transition states)
 - Energies of minima and transition states
 - Chemical reactivity
 - IR, UV, NMR spectra
 - Physical properties of molecules
 - Interaction energy between two or more molecules