Review III: Cellular Processes

Judy Wieber

BBSI @ Pitt 2007

Department of Computational Biology University of Pittsburgh School of Medicine

May 25, 2007

Outline

- Metabolism
- Cell cycle
- Transcription and RNA processing
- Translation: protein synthesis
- Signal transduction
- Immune response
- Disease states

Metabolism

Metabolism (continued)

Regulation via Phosphorylation

Phosphorylation and dephorphorylation regulate many key events

- Cell cycle control
- Signal transduction
- Transcription

Cell Cycle

- Four phases of the cell cycle:
- Mitosis (M phase)
- Gap 1 (G1 phase)
- DNA Synthesis (S phase)
- Gap 2 (G2 phase)
- □ A fifth "phase": G0 (quiescence)

Cell Cycle Phases

- M: cell division; each cell gets 1 copy of the genome
- G1: cell growth; preparation for DNA replication
- S: DNA synthesis (replication)
- □ G2 : preparation for M phase
- \square M phase animations: (1) (2)

Cell Cycle Control

- Web animation (link)
- Checkpoints controlled by proteins
- Important group of checkpoint proteins are the cyclins
- Cyclin levels "cycle" during different phases
- Cyclins, by themselves, are inactive
- Associate with cyclin-dependent kinases (cdk)
- Cdk levels invariant throughout the cell cycle
- G1 cyclin cyclin D (cdk4)
- □ S-phase cyclins cyclins A and E (cdk2)
- □ G2 cyclins cyclin B (cdc2 (cdk1))

Cyclins and cdks

Cyclins
G1 cyclin (cyclin D)
S-phase cyclins (cyclins E and A)
Mitotic cyclins (cyclins B and A)

Cdks

- G1 Cdk (cdk4)
- S-phase cdk (cdk2)
- M-phase cdk (cdc2 (Cdk1))

Cell Cycle Checkpoints

Dissociation of APC; exit from M

Signal Transduction

- Ensures that a signal is converted from one form to another
- From the exterior of the cell to the interior
- Retain original signal content

Steps in Signal Transduction

- □ Signal is sent. e.g. hormone, non-steriod ligand (epinephrine)
- Recognition of the signal by the cell via a receptor.
- Receptors can be present on the cell membrane or in the cytosol
- Internal signaling molecules transduce and amplify the signal
- Carried out via a signaling cascade, with multiple regulatory steps
- E.g. Glycogen breakdown in response to epinephrine

Genes, RNA, and Proteins

Chromosomes

Mitosis

(Mitosis with music)

Chromatin Packaging

- Why does DNA in interphase "look" different from DNA in mitosis?
- Higher order of packaging
- Mitotic phase: DNA packaged into chromosomes
- Interphase: DNA present as chromatin
- "beads-on-a-string"
- beads = nucleosomes
- nucleosomes = DNA wrapped around histones

IS 50,000x SHORTER THAN ITS EXTENDED LENGTH

Mitotic chromosomes = transcriptionally inactive (heterochromatin)

Interphase chromatin = transcriptionally active (euchromatin)

Exons, Introns, Codons

The Genetic Code

The Genetic Code					
	Second base				
		U	С	Α	G
First base	U	$\left\{ \begin{matrix} UUU\\ UUC \end{matrix} \right\}$ Phe $\left\{ \begin{matrix} UUA\\ UUG \end{matrix} \right\}$ Leu	$\left. \begin{matrix} UCU \\ UCC \\ UCA \\ UCG \end{matrix} \right\} Ser$	UAU UAC UAA Stop UAG Stop	UGU UGC UGA Stop UGG Trp
	С	CUU CUC CUA CUG	CCU CCC CCA CCG	$ \begin{array}{c} CAU \\ CAC \end{array} \right\} His \\ \begin{array}{c} CAA \\ CAG \end{array} \Big\} Gln \end{array} $	CGU CGC CGA CGG
	A	$\left. \begin{array}{c} AUU \\ AUC \\ AUA \end{array} \right\} IIe \\ AUG Met \end{array} \right.$	$\left. \begin{array}{c} ACU \\ ACC \\ ACA \\ ACG \end{array} \right\} Thr$	$ \begin{array}{c} AAU \\ AAC \end{array} \right\} Asn \\ \begin{array}{c} AAA \\ AAG \end{array} \right\} Lys $	$ \begin{cases} AGU \\ AGC \end{cases} Ser \\ AGA \\ AGG \end{cases} Arg $
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	$\left. \begin{matrix} GAU \\ GAC \end{matrix} \right\} Asp \\ \left. \begin{matrix} GAA \\ GAG \end{matrix} \right\} Glu$	GGU GGC GGA GGG

Transcription and Translation

(Translation)

Post-translational Modification

Eukaryotes vs. Prokaryotes

Immune Response

(<u>Cells of the immune system</u>) (<u>The cellular immune response</u>)

Disease States

DiabetesCancerAIDS

Diabetes

(Insulin and glucose regulation) (Type II Diabetes video)

Cancer

(<u>Oncogenes</u>) (<u>p53's role</u>) (<u>Nova - cancer programs</u>)

AIDS

Structure of Human Immunodeficiency Virus (HIV)

(<u>AIDS video – Kaiser</u>) (<u>HIV lifecycle - Johns Hopkins</u>)

Additional Reading

Molecular Biology of the Cell, 3rd ed., Alberts *et al.* Biochemistry, 5th ed., Berg, Tymoczko, Stryer
Biochemistry, 3rd ed., Voet & Voet