Review II: The Molecules of Life

Judy Wieber

BBSI @ Pitt 2007

Department of Computational Biology University of Pittsburgh School of Medicine

May 24, 2007

Outline

- Introduction
- Proteins
- Carbohydrates
- Lipids
- Nucleic acids
- Special types of proteins

Proteins

- Amino acids
- Peptide bond formation
- Peptides vs. proteins
- Hierarchy of protein structure
- Protein motifs
- Domains

Amino Acids

- Building blocks of proteins
- 20 amino acids
- Linear chain of amino acids form a peptide/protein

(R = side chain)

- $\square \alpha$ -carbon = central carbon
- \square α -carbon = chiral carbon, i.e. mirror images: L
 - and D isomers
- Only L isomers found in proteins
- General structure:

$$\begin{array}{c} \mathsf{R} \\ \mathsf{H}_{2}\mathsf{N} & - \begin{array}{c} \mathsf{C}_{\alpha} \\ \mathsf{C}_{\alpha} \\ \mathsf{H} \end{array} \\ \mathsf{H} \end{array} \\ \mathsf{COOH}$$

Amino Acids (contd.)

- R group varies
- Thus, can be classified based on R group
- Glycine: simplest amino acid
- Side chain R = H
- **Unique because** Gly α carbon is *achiral*

$$H_{2}N = -\frac{H}{C_{\alpha}} - COOH$$

H Glycine, Gly, G

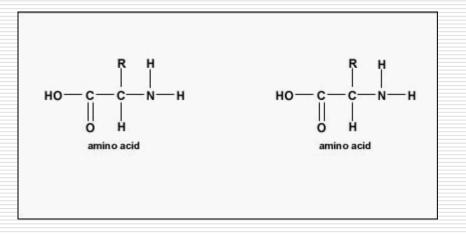
C00 ⁻	C00 ⁻	C00 ⁻	C00 ⁻	C00-	Amino Acids:
H ₃ N ⁺ Ç ⁻ H	H ₃ N⁺Ç-H	H ₃ N [•] -Č-H	H₃N [‡] ,Č-H	ны-с-н	
ĊH ₃	H ₂ C CH ₂	ÇH2	H ₃ C-CH	2HC CH2	Ctructure
Alanine	H ₃ C CH ₃ Valine	H ₂ C CH ₂	CH ₂	СН2	Structures
Alahine	Valine	Leucine	Isoleucine	Proline P	
C00-	C00-	L C00 ⁻	- C00-	C00 ⁻	
H ₃ N⁺Ċ́-H	H ₃ N [•] Ċ-H	H ₃ N⁺Ċ-H	H ₃ N⁺Ċ-H	H ₃ N⁺Ċ-H	
CH2	ĊH ₂	ČH2	ŤЙ	ĊH ₂	blue = R (side chain)
s ch2		() Liči	Glycine	Serine	
Ċн ₃	× 1	Ň Ĥ Ť	Ğ	S	
Methionine	Phenylalar F	nine Tryptopha W	n coo-	COO-	orange = non-polar, hydrophobic
C00 ⁻	C00-	C00-	H ₃ N⁺Ċ-H	H ₃ N-Ċ-H	neutral (uncharged)
H ₃ N-Ċ-H	H ₃ N-Ċ-H	H ₃ N-Ç-H	CH ₂	CH2	(3)
HC-OH	SH SH	C ⁿ 2	C ⁿ 2	- 0	green = polar, hydrophilic,
Threonine	Cysteine	о́`нн ₂	о́́нн ₂	ŏн	
Т	<u> </u>	Asparagine N	Glutarnine Q	Tyrosine Y	neutral (uncharged)
COO ⁻ H ₃ N-C-H	ÇOO⁻ H₃N-Ç-H	C00 ⁻ H ₃ N-C-H	COO ⁻ H ₃ N [*] -Ċ-H	СОО ⁻ Н ₃ №-С-Н	
CH ₂	CH ₂	CHo	CH ₂	CH ₂	magenta = polar, hydrophilic,
2	ĊН2	ĊH2	ĊH2	HC=C	acidic (- charged)
0.0	~~~~~	CH ₂	СН ₂		aciaic (chargea)
Aspartic	Glutarnic	*NH3	. ¢	Ĥ	light blue - pelar bydraphilia
Acid	Acid E		2 ^{HN[®] NH₂}		light blue = polar, hydrophilic,
D		Lysine K	Arginine D	Histidine H	basic (+ charged)
			N		

Amino Acids: Classification

Non-polar, hydrophobic,

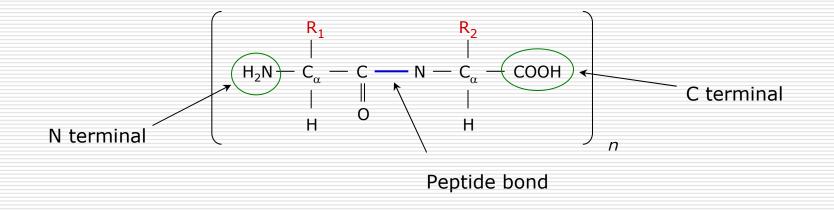
neutral (uncharged) Alanine, Ala, A Valine, Val, V Leucine, Leu, L Isoleucine, Ile, I Proline, Pro, P Methionine, Met, M Phenylalanine, Phe, F Tryptophan, Trp, W

Polar, hydrophilic, Acidic (negatively charged) Aspartic acid, Asp, D Glutamic acid, Glu, E

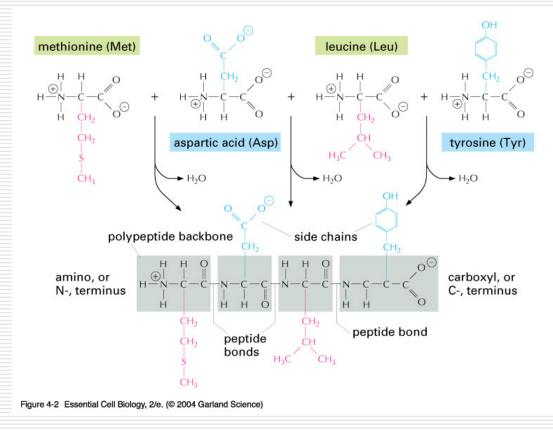

(Amino acid viewer)

Polar, hydrophilic, neutral (uncharged) Glycine, Gly, G Serine, Ser, S Threonine, Thr, T Cysteine, Cys, C Asparagine, Asn, N Glutamine, Gln, Q Tyrosine, Tyr, Y

Polar, hydrophilic, basic (positively charged) Lysine, Lys, K Arginine, Arg, R Histidine, His, H


Peptide Bond Formation

- Condensation reaction
- Between –NH₂ of *n* residue and –COOH of *n+1* residue
- Loss of 1 water molecule
- Rigid, inflexible



Peptides/Proteins

- Linear arrangement of n amino acid residues linked by peptide bonds
- n < 25, generally termed a peptide</p>
- \square *n* > 25, generally termed a protein
- \Box Peptides have directionality, i.e. N terminal \rightarrow C-terminal

Polypeptide Backbone

Binding of Ligands

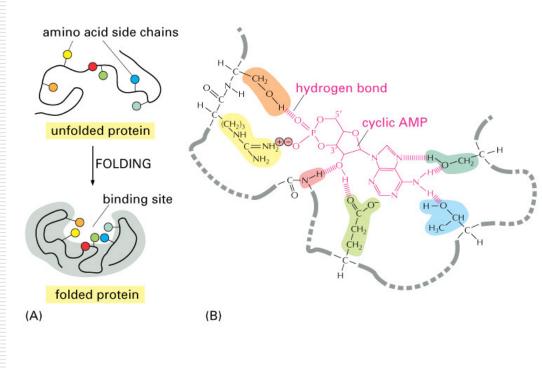
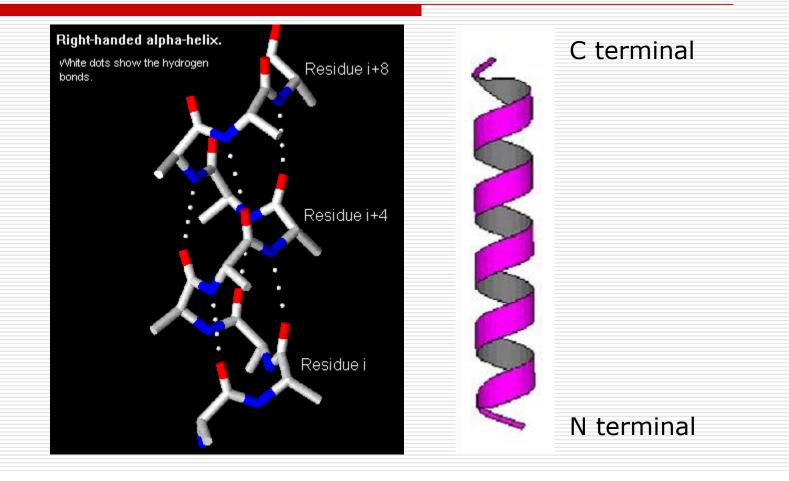


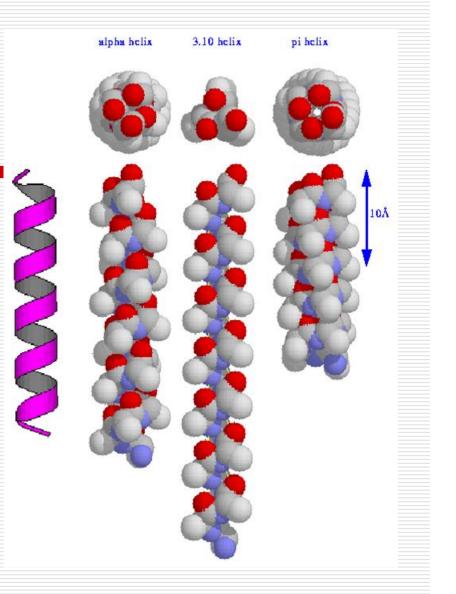
Figure 4-31 Essential Cell Biology, 2/e. (© 2004 Garland Science)

Hierarchy of Protein Structure


- Four levels of hierarchy
- Primary, secondary, tertiary, quarternary
- Primary structure: Linear sequence of residues
- e.g: MSNKLVLVLNCGSSSLKFAV
- e.g: MCNTPTYCDLGKAAKDVFNK ...
- Secondary Structure: Local conformation of the polypeptide backbone
- $\square \alpha$ -helix, β -strand (sheets), turns, other

(Amino acids-proteins movie)

Secondary Structure: α -helix


- ☐ Most abundant; ~35% of residues in a protein
- Repetitive secondary structure
- \Box 3.6 residues per turn; pitch (rise per turn) = 5.4 Å
- \Box C'=O of *i* forms H bonds with NH of residue *i*+4
- □ Intra-strand H bonding
- C'=O groups are parallel to the axis; side chains point away from the axis
- All NH and C'O are H-bonded, except first NH and last C'O
- Hence, polar ends; present at surfaces
- Amphipathic

α -helix (contd.)

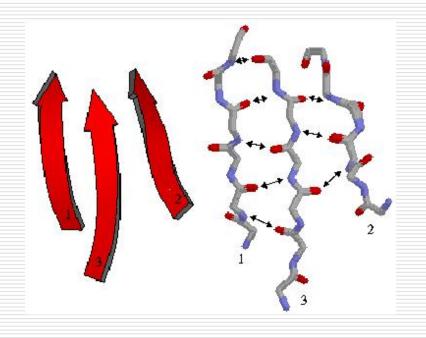


α -helix Variations

- Chain is more loosely or tightly coiled
- 3₁₀-helix: very tightly packed
- \square *π*-*helix*: very loosely packed
- Both structures occur rarely
- Occur only at the ends or as single turns

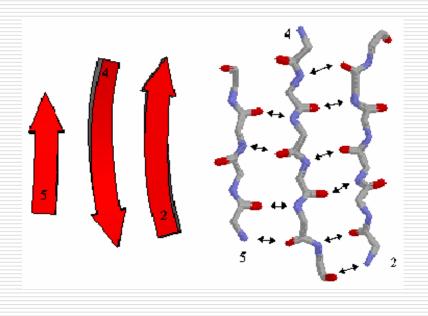
Hemoglobin (PDB 1A3N)

β -sheets

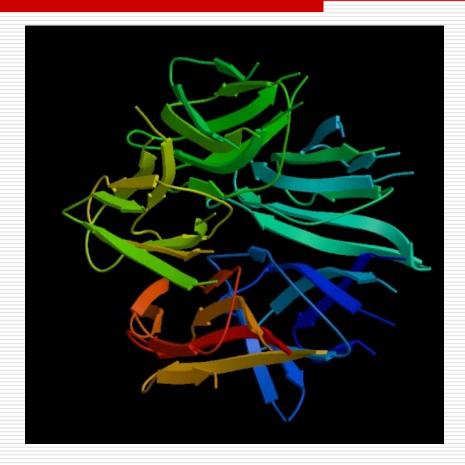

- Other major structural element
- **D** Basic unit is a β -strand
- Usually 5-10 residues
- Can be parallel or anti-parallel based on the
 - relative directions of interacting β -strands
- Pleated appearance

β -sheets

- **Unlike** α -helices:
- Are formed with different parts of the sequence
- H-bonding is inter-strand (opposed to intra-strand)
- Side chains from adjacent residues are on opposite sides of the sheet and do not interact with one another
- **Like** α -helices:
- Repeating secondary structure (2 residues per turn)
 Can be amphipathic


Parallel β -sheets

The aligned amino acids in the β-strand all run in the same biochemical direction, N- to C-terminal



Anti-parallel β–sheets

The amino acids in successive strands have alternating directions, N-terminal to C-terminal

Nucleoplasmin (PDB 1K5J)

Amino Acid Preferences (1)

α-helix forming

- The amino acid side chain should cover and protect the backbone H-bonds in the core of the helix
- □ Ala, Leu, Met, Glu, Arg, Lys: good helix formers
- Pro, Gly, Tyr, Ser: very poor helix formers

β-strand forming

- Amino acids with large bulky side chains prefer to form β-sheet structures
- Tyr, Trp, Ile, Val, Thr, Cys, Phe

Amino Acid Preferences (2)

Secondary structure disruptors

Gly: side chain too small

 \square Pro: side chain linked to α -N, has no N-H to

H-bond; rigid structure due to ring

Asp, Asn, Ser: H-bonding side chains compete directly with backbone H-bonds

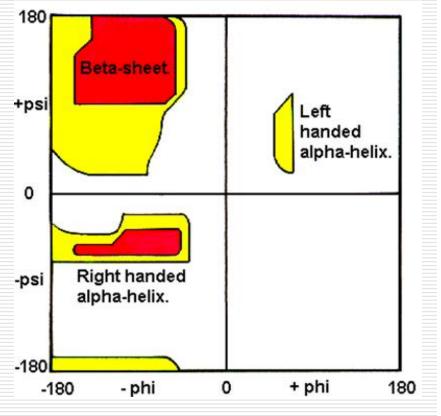
Turns/Loops

□ Third "classical" secondary structure

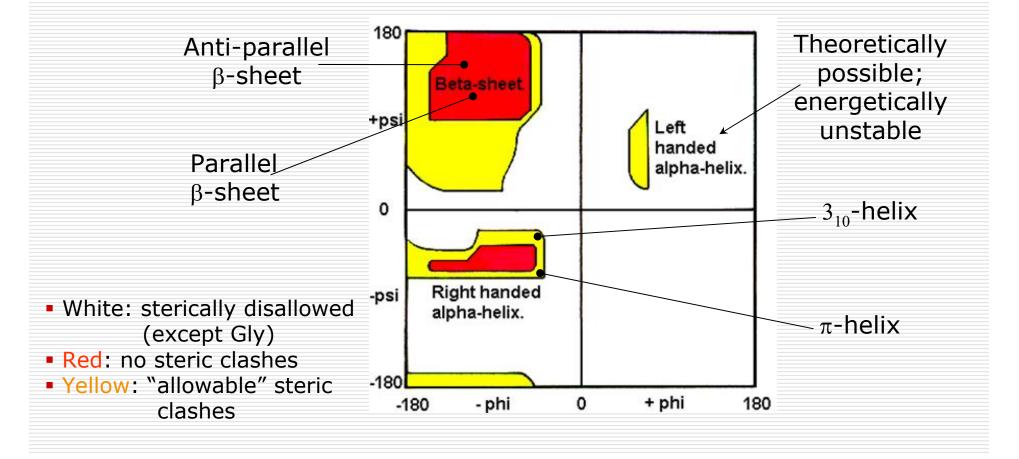
- Reverses the direction of the polypeptide chain
- Located primarily on protein surface
- Contain polar and charged residues
- □ Three types: I, II, III

Phosphofructokinase (PDB 4PFK)

The Torsional Angles: ϕ and ψ


- Each amino acid in a peptide has two degrees of backbone freedom
- $\hfill\square$ These are defined by the ϕ and ψ angles

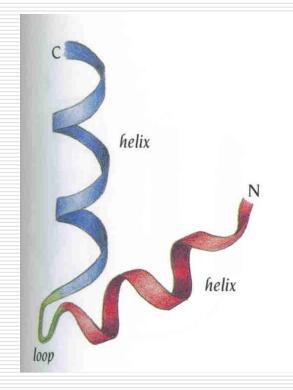
$$\Box \phi = angle between C_{\alpha} - N$$


 $\Box \psi$ = angle between C_a-C'

The Ramachandran Plot

- Plot of allowable φ and ψ angles
 φ and ψ refer to rotations of two rigid peptide units around C_α
 Most combinations produce steric collisions
 Disallowed regions generally involve steric hindrance between
 - side chain C_{β} methylene group and main chain atoms

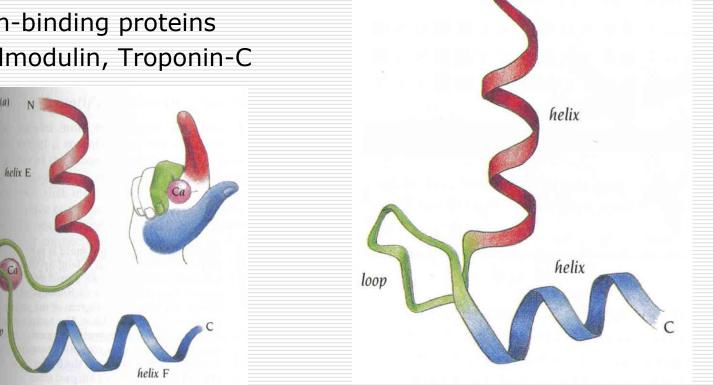
The Ramachandran Plot (contd.)



Protein Motifs

- (Simple) combinations of secondary structure elements with a specific geometric arrangement
- Super-secondary structures"
- Can be associated with a specific function, e.g. DNA binding, or metal ion binding
- Can be part of a larger functional and/or structural assembly ("domain")

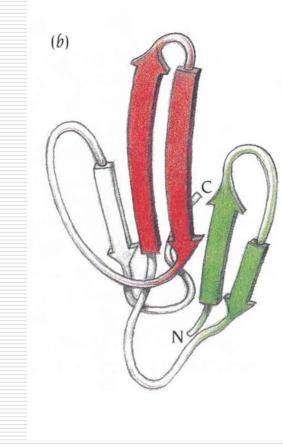
Helix-Turn-Helix (HTH)


- $\hfill\square$ Simplest $\alpha\mbox{-helix}$ motif: 2 α helices joined by a loop
- □ Also called *Helix-Loop-Helix*, *HLH*
- Common structural motif for DNA binding proteins
- One helix recognizes specific sequence of nucleotides and fits into the groove in the DNA double helix; the other stabilizes the bound configuration

EF Hand

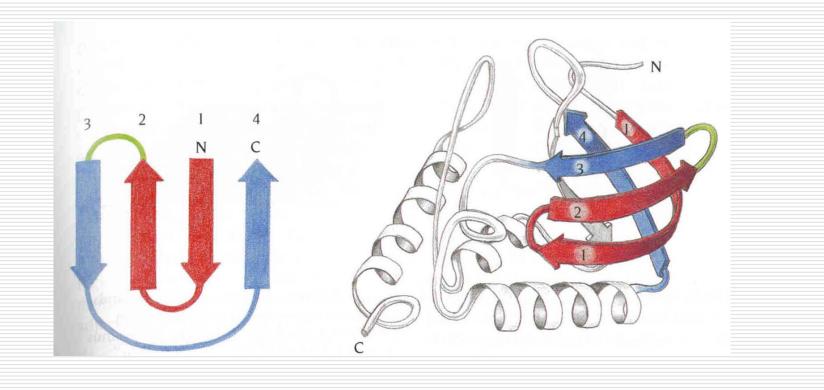
(a)

Specific for several different calcium-binding proteins E.g. calmodulin, Troponin-C

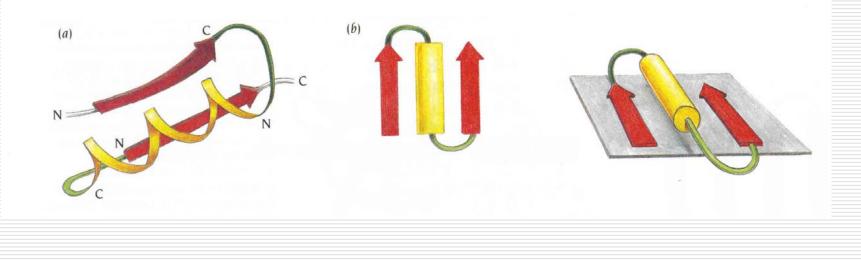


(b)

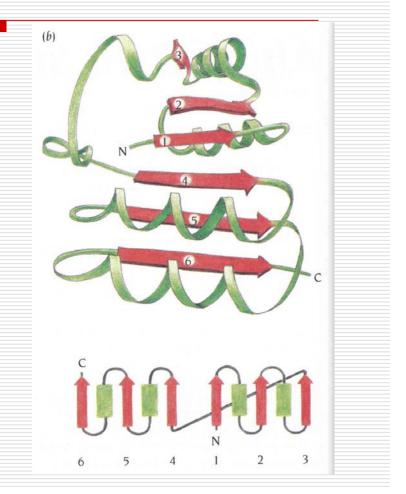
N


Hairpin β-motif

- \Box Also called β -hairpin
- 2 adjacent anti-parallel strands
 - joined by a loop


Greek Key motif

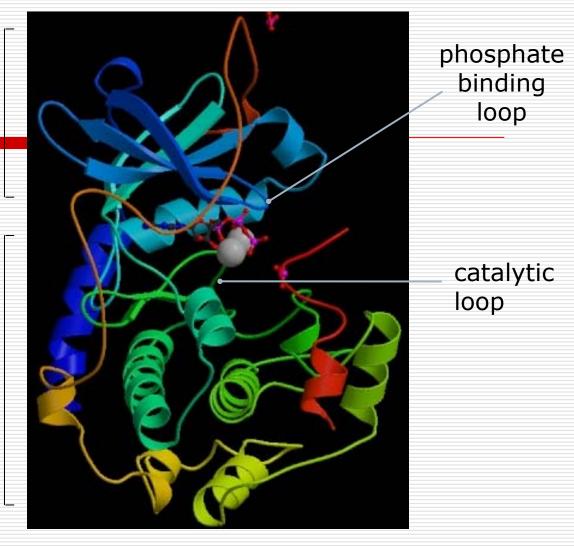
\Box 4 adjacent anti-parallel β -strands


β - α - β Fold

- **D** Parallel β -strands connect by an α helix
- Found in most proteins with parallel β strands. E.g. Triose phosphate isomerase

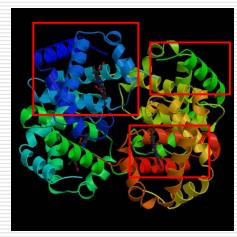
Rossman Fold

- $\hfill\square$ Unique example of a $\beta{-}\alpha{-}\beta$ fold
- 3 parallel β-sheets with 2 linking α helices
- Often seen in nucleotide-binding proteins


Domains

- Primary structure
- ✓ Secondary structure
- ✓ Super-secondary structure
- Domains
- Fundamental unit of tertiary structure
- (Part of a) polypeptide chain that can fold independently into a stable tertiary structure
- E.g. catalytic domain of protein kinase; binding pocket of a ligand

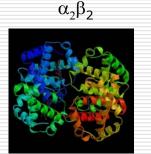
3D Structure of a Protein Kinase Domain


N-terminal

C-terminal

Quarternary Structure

- Spatial organization of subunits to form functional protein
- E.g. Hemoglobin
- **2** α chains, 2 β chains
- Each chain binds heme (Fe)
- \square Forms an $\alpha_2\beta_2$ tetramer

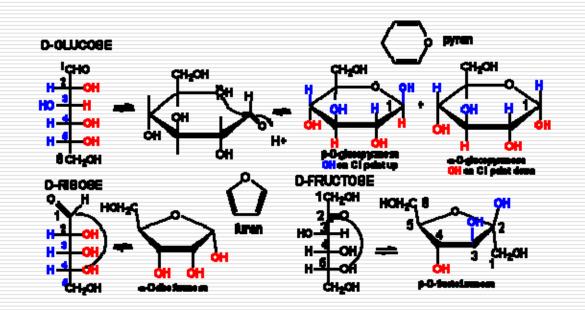


Putting it all together

Primary Structure ... KAAWGKVGAHA ... Secondary Structure α -helix, β -sheets, turns/loops

Quarternary Structure

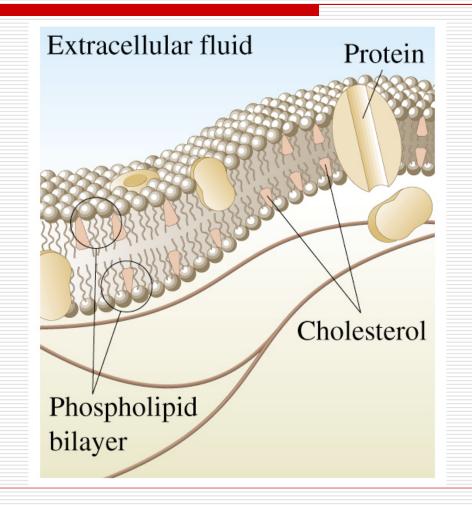
Tertiary Structure a single chain (α, β)


Super-secondary Structure Heme-binding pocket/domain (His)

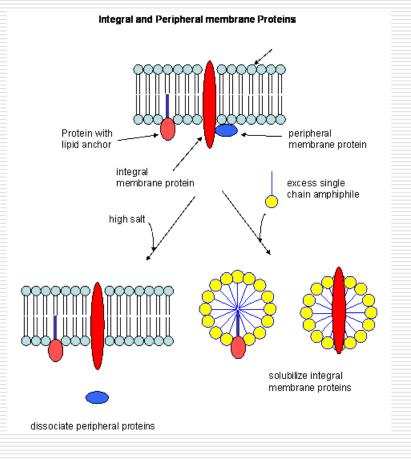
Carbohydrates

SugarsPolysaccharides

Sugars


Lipids

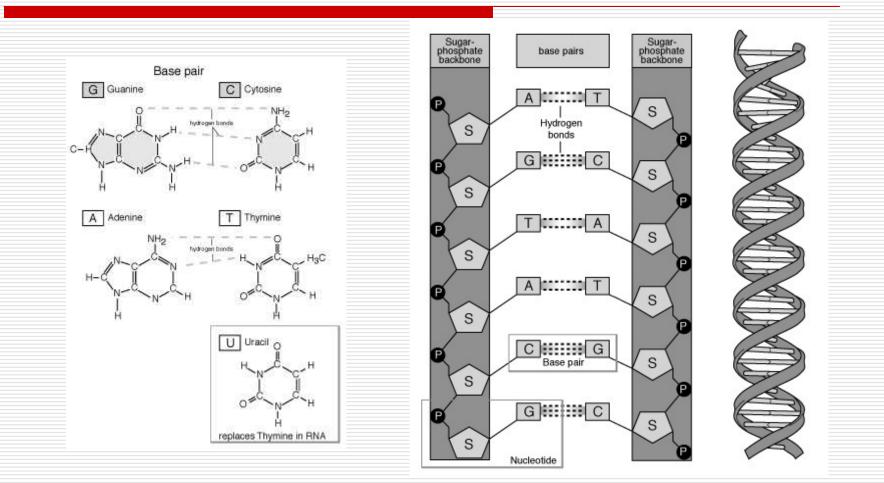
Fatty acids


- Triglycerides
- Steroids
- Membranes

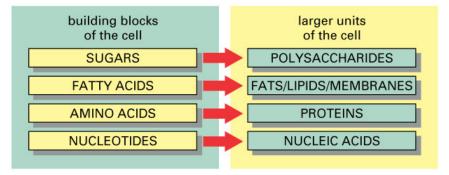
(Structure of lipids)

Cell Membrane

Types of Membrane Proteins



Nucleic Acids


NucleotidesDNARNA

Base Pairing

Biopolymers

Figure 2-15 Essential Cell Biology, 2/e. (© 2004 Garland Science)

Composition of a Cell

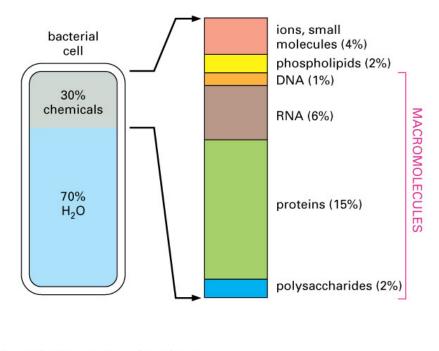
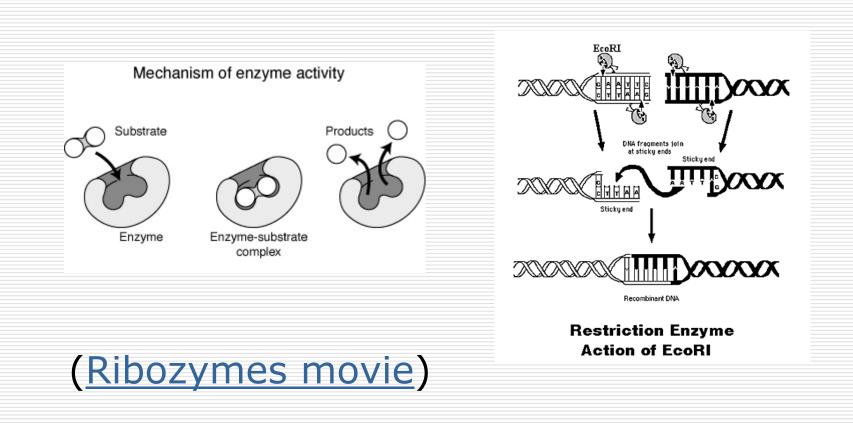



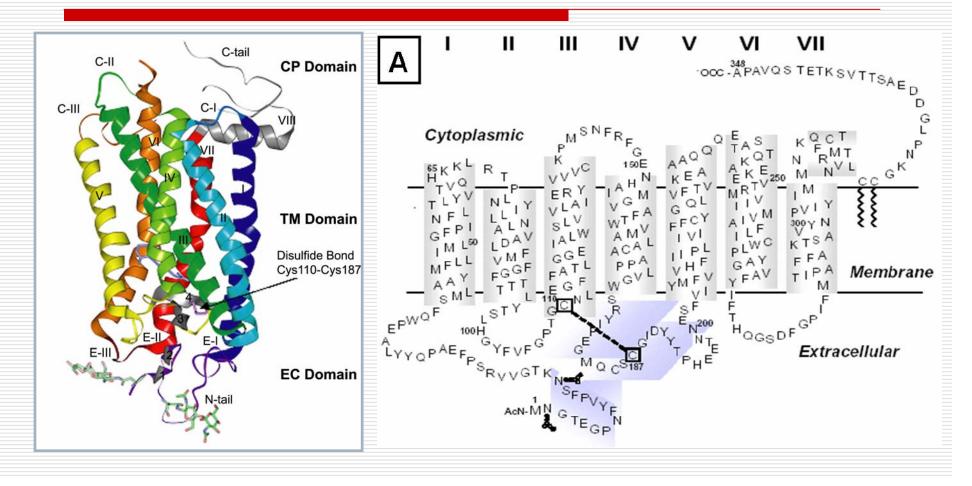
Figure 2-26 Essential Cell Biology, 2/e. (© 2004 Garland Science)

Special Types of Proteins

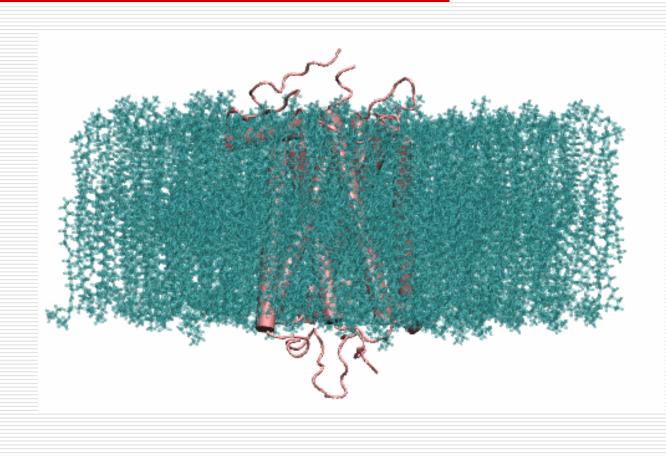
- Enzymes
- Receptors
- Channel proteins
- Antibodies

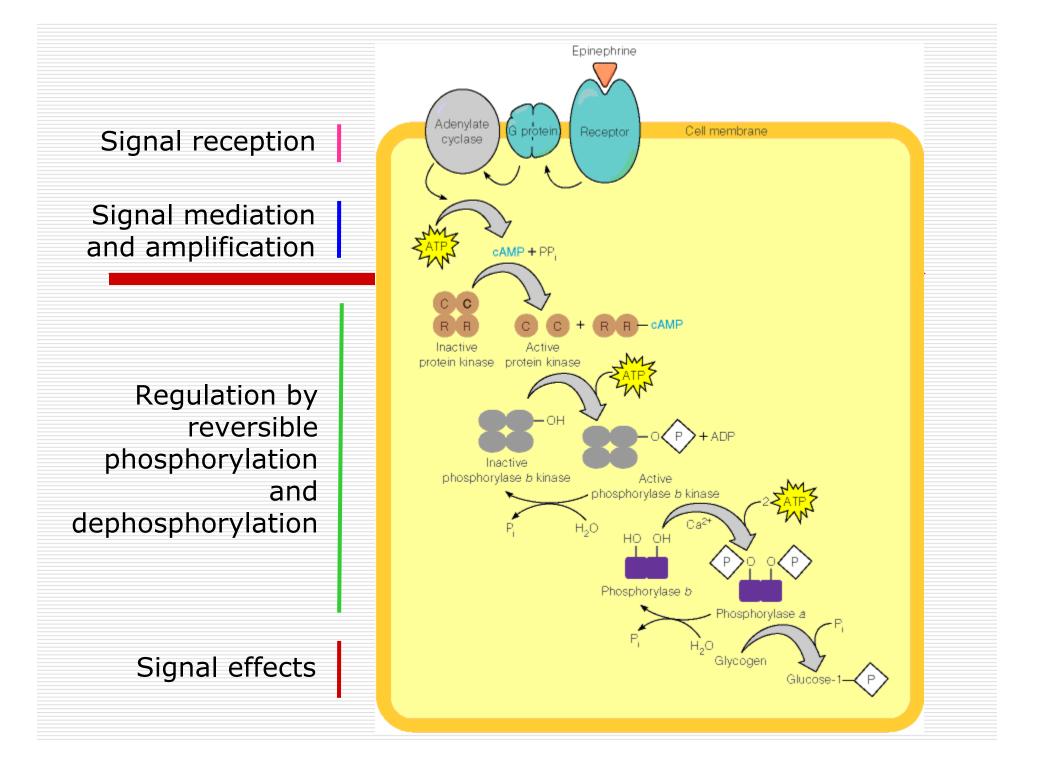
Enzymes

Cell Receptors


Ion-channel linked: involved in rapid synaptic signaling between excitable cells; mediated by neurotransmitters

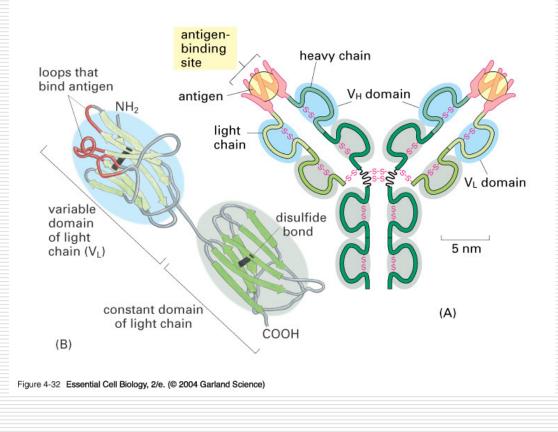
- Enzyme-linked receptors: when activated, either function directly as enzymes or are associated with enzymes.
- G-protein coupled receptors (GPCR)


GPCRs


- Largest family of cell-surface receptors
- Biological functions include smell, taste, vision, blood pressure neurotransmission, embryogenesis, cell growth, development
- Rhodopsin is the only GPCR with a known 3D structure
- \Box Contains 7 membrane traversing α helices (7TM)
- □ N terminal outside cell, C terminal inside cell
- Ligand binding outside cell induces conformational change detected inside cell
- Mediating molecule is a G protein (hence the name GPCR)
- **\Box** Heterotrimeric GTP-binding regulatory protein (α , β , γ)
- Activated G protein transmits signal by binding to other proteins (e.g. adenylate cyclase: converts ATP to cAMP)

GPCR Structure

GPCR Structure (contd.)



Channel Proteins

Structure of Channel Proteins

Antibody Structure

Additional Reading

General information

- Biochemistry, 5th ed., Berg, Tymoczko, Stryer
- Biochemistry, 3rd ed., Voet & Voet

Detailed information

- Proteins, 2nd ed., Creighton
- Introduction to Protein Structure, 2nd ed., Branden & Tooze

Internet

- Images: Protein Data Bank (PDB): www.rcsb.org/pdb
- Numerous websites (Google protein secondary structure)