Review I: Chemistry & Biology Fundamentals

Judy Wieber

BBSI @ Pitt 2007

Department of Computational Biology University of Pittsburgh School of Medicine

May 24, 2007

Introduction

What is biochemistry?
 Why study biochemistry?

Ways to study biochemistry

Biochemistry

"The science concerned with the chemical constituents of living cells and with the reactions and processes they undergo"

<u>Reference</u>

Life as we know it

How did life arise?

Classification of organisms

The basic unit of life: the cell

(How did life arise?)

(The three domains)

Cells

- Prokaryotic vs. Eukaryotic
- Plant vs. Animal
- Organelles
- Viruses

(Cells Alive!)

Viruses

(Relative size of bacteria and viruses movie)

Matter

Atoms

- Composition
- Isotopes
- □ The periodic table

(Periodic properties movie)(Web Elements[™] Periodic Table)

Elements of Life

Trace elements required for most plant and animal life.

Elements that make up the bulk of living matter.

Trace elements possibly required by some life forms.

Electromagnetic Spectrum

lons

Molecules

Bonds

- Molecular structure
- Types of compounds
- Water
- Organic chemicals
- Isomerism

(Representing chemical structures movie)

(Intermolecular forces)

Intermolecular Forces

Chemical Structures

Isomers

Ethane Conformations

Polypeptide Chain

Organic Chemicals

TABLE 27.1	Some Common Alkyl Groups	
Name	Structural Formula	
Methyl	—CH ₃	
Ethyl	-CH ₂ CH ₃	
Propyla	-CH ₂ CH ₂ CH ₃	
Isopropyl	CH ₃ CHCH ₃	
Butyl ^a	-CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃	
Isobutyl	-CH ₂ CHCH ₃	
s-Butyl ^b	CH ₃ CHCH ₂ CH ₃	
	CH ₃	
<i>t</i> -Butyl ^c	CH ₃ CCH ₃	

^a In the past, the prefix *normal* or *n*- was used for a straight-chain alkyl group, such as *n*-propyl or *n*-butyl.

 $b_s = secondary.$

 $^{c}t = tertiary.$

Bond Lengths

TABLE 11.2 Some Average Bond Lengths ^a						
Bond	Bond Length, pm	Bond	Bond Length, pm	Bond	Bond Length, pm	
н—н	74.14	С-С	154	N—N	145	
н-с	110	C = C	134	N = N	123	
H-N	100	$C \equiv C$	120	N≡N	109.8	
H-O	97	C—N	147	N-O	136	
н—ѕ	132	C = N	128	N=O	120	
H—F	91.7	$C \equiv N$	116	0-0	145	
H-C1	127.4	c-o	143	0 = 0	121	
H—Br	141.4	c=0	120	F—F	143	
H—I	160.9	C-C1	178	C1-C1	199	
				Br—Br	228	
				I—I	266	

^aMost values (C—H, N—H, C—H,...) are averaged over a number of species containing the indicated bond and may vary by a few picometers. Where a diatomic molecule exists, the value given is the actual bond length in that molecule (H₂, N₂, HF,...) and is known more precisely.

Types of Compounds

TABLE 13.7 Characteristics of Crystalline Solids

Туре	Structural Particles	Intermolecular Forces	Typical Properties	Examples
Metallic	Cations and delocalized electrons	Metallic bonds	Hardness varies from soft to very hard; melting point varies from low to very high; lustrous; ductile; malleable; very good conductors of heat and electricity	Na, Mg, Al, Fe, Sn, Cu, Ag, W
Ionic	Cations and anions	Electrostatic attractions	Hard; moderate to very high melting points; nonconductors as solids, but good electric conductors as liquids; many are soluble in polar solvents like water.	NaCl, MgO, NaNO ₃
Network covalent	Atoms	Covalent bonds	Most are very hard and either sublime or melt at very high temperatures; most are nonconductors of electricity	C (diamond), C (graphite), SiC, AlN, SiO ₂
Molecular Nonpolar	Atoms or nonpolar molecules	Dispersion forces	Soft; extremely low to moderate melting points (depending on molar mass); sublime in some cases; soluble in some nonpolar solvents	He, Ar, H ₂ , CO ₂ , CCl ₄ , CH ₄ , I ₂
Polar	Polar molecules	Dispersion forces and dipole-dipole attractions	Low to moderate melting points; soluble in some polar and some nonpolar solvents	(CH ₃) ₂ O, CHCl ₃ , HCl
Hydrogen– Bonded	Molecules with H bonded to N, O, or F	Hydrogen bonds	Low to moderate melting points; soluble in some hydrogen-bonded solvents and some polar solvents	H ₂ O, NH ₃

Relative Sizes of Atoms, Molecules, Organelles, and Cells

Chemical Reactions

- Types of reactions
- Mechanisms
- Balancing

Thermodynamics

- Free energy, enthalpy, entropy
- Equilibrium constant
- Spontaneity

Spontaneity

TABLE	20.1	Criteria for Spontaneous Change: $\Delta G = \Delta H - T \Delta S$			
Case	ΔH	ΔS	ΔG	Result	Example
1	-	+	-	spontaneous at all temp	$2 N_2 O(g) \longrightarrow 2 N_2(g) + O_2(g)$
2	_	_	$\begin{pmatrix} -\\ + \end{pmatrix}$	spontaneous at low temp nonspontaneous at high temp	$H_2O(1) \longrightarrow H_2O(s)$
3	+	+	$\left\{ egin{array}{c} + \\ - \end{array} ight.$	nonspontaneous at low temp } spontaneous at high temp }	$2 \text{ NH}_3(g) \longrightarrow N_2(g) + 3 \text{ H}_2(g)$
4	+	_	+	nonspontaneous at all temp	$3 O_2(g) \longrightarrow 2 O_3(g)$

Kinetics

Rate equations
 Activation energy
 Catalysis

(Catalysis)