Modeling Ion Transport through Biological Channels:

Rob D. Coalson *University of Pittsburgh Pittsburgh, PA 15260 USA*

Transmembrane Transport

neural systems:

 \bullet

- a) communication among neurons
	- * action potential
	- * synaptic signaling
	- b) receptor brain communication
- \bullet **heart muscle** \bullet
	- **signaling and regulatory processes**

Channel malfunction

Cystic fibrosis **Epilepsy Diabetes Migraines** Neuro-toxins

50% of drugs on the market target ion channels!

Recording Single Channel Ion Currents $\boxed{\triangleright}$

Patch-Clamp Experiment

Plotting Current-Voltage Curve

Typical Ion Channels with Known Structure:

K + channel (KCSA)

Acetylcholine receptor transmembrane domain

Types of ion channels:

 \checkmark Simple pores (GA, GAP junctions)

- 9 Substrate gated channels (Nicotinic receptor)
- \checkmark Voltage-gated channels (K-channels)
- \checkmark Pumps (ATP-synthase, K⁺,Na⁺-ATPase)

Membrane Surface-Charge Titration Probed by Gramicidin A Channel Conductance -- Rostovtseva et al., Biophys. J. **75**, 1783 (1998).

Poisson - Nernst -Planck Theory (PNP)

 \triangleright Dielectric slab with a pore in electrolyte solution

Membrane ^εm *=2* $Water$ $ε_B$ =80

 \checkmark j_{\bot}=0 no flux through the channel wall Flux: Electrostatics: *Poisson (P)* $div(\vec{j}_i) = 0$ $\vec{\nabla}\cdot(\varepsilon\vec{\nabla}\,\varphi) = -4\pi\,(\,\,\sum\, \rho_{\,j} + \sum\,$ = $=$ 1 $=$ *ions ii i atoms protein j* $\vec{\nabla} \cdot (\mathcal{E} \vec{\nabla} \, \varphi) = -4\pi \, (\sum \, \rho_{\,j} + \sum \, z_i e c_{\,i}^{\,j})$ 11 $i=1$ $\vec{j}_i = -D_i \vec{\nabla} c_i - D_i q_i c_i \vec{\beta} \vec{\nabla} \varphi$ $j_i = -D_i \nabla c_i - D_i q_i c_i$ <--*Steady state current Nernst-Planck (NP)*

Boundary Conditions: at the box boundaries

- 9 Applied Potential φ_L, φ_R =const – dirichlet bc for potential
- \checkmark Known salt concentrations $c_{\rm L}, c_{\rm R}$ =const – dirichlet bc for concentrations

Gramicidin A in DMPC lipid bilayer and water

\checkmark Antibiotic peptide

Forms a pore in the cell wall of a bacteria and lets out monovalent cations (K+, Na+) Membrane potential disappears and bacteria dies.

 \checkmark 15 amino acids, helical \checkmark Channel is formed by a headto-head dimer

 \checkmark NMR structure of protein with partial charges \checkmark water, membrane and mobile ions - continuum

Cation Density in Gramicidin A Channel From PNP Calculation

Cation density maxima indicate possible binding sites inside the channel protein

Theory/Modeling results from: A.E. Cárdenas, R. D. Coalson and M. G. Kurnikova, "3D Poisson-Nernst-Planck Theory Studies: Influence of MembraneElectrostatics on Gramicidin A Channel Conductance", Biophys. J. *79*, 80-93 (2000).

 \bullet GA with charges and dipoles embedded on the membrane surface

${\rm GA}$

PC (uncharged)/ PS (charged) Lipid Bilayer

GMO (non-dipolar) Lipid Bilayer

I-V curves for GA embedded in PC (uncharged) and PS (charged) Membranes at neutral pH

Legend: open triangle = $1.0M$ (charges); open diamond = $0.1M$ (charges); closed triangle = $1.0M$ (neutral); closed diamond = $0.1M$ (neutral)

Conductance for GA in mixed bilayers at neutral pH $[CsCl] = 0.1M$

* Rostovtseva et al.