
Protein dynamicsProtein dynamics

Folding/unfolding dynamics Folding/unfolding dynamics 

Passage over one or more energy barriersPassage over one or more energy barriers
Transitions between infinitely many conformationsTransitions between infinitely many conformations

Fluctuations near the folded stateFluctuations near the folded state

Local conformational changesLocal conformational changes
Fluctuations near a globalFluctuations near a global minimumminimum

B. Ozkan, K.A. Dill & I. Bahar, Protein Sci. 
11, 1958-1970, 2002



Stuctures suggest mechanisms of function

A. Comparison of static structures available in the PDB for the same 
protein in different form has been widely used as an indirect method 
of inferring dynamics. 

B. NMR structures provide information on 
fluctuation dynamics

Bahar et al. J. Mol. Biol. 285, 1023, 1999.



Several modes of motions in native stateSeveral modes of motions in native state

Hinge site



SupramolecularSupramolecular dynamicsdynamics

Multiscale modeling – from full atomic to multimeric structures

Wikoff, Hendrix and coworkers



-------- 250 Å ------

Progresses in molecular approaches:
Coarse-grained approaches for large complexes/assemblies

-------- 25 Å ------

Example: EN models for modeling 
ribosomal machinery (Frank et al, 
2003; Rader et al., 2004)



Macromolecular ConformationsMacromolecular Conformations
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Schematic representation of a chain of n backbone units.  
Bonds are labeled from 2 to n, and structural units from 
1 to n.  The location of the ith unit with respect to the 
laboratory-fixed frame OXYZ is indicated by the position 
vector Ri.  

Schematic representation of a portion of the main chain of a 
macromolecule.  li is the bond vector extending from unit  i-

1 to  i, as shown.  ϕi denotes the torsional angle about 
bond i.



How/why does a molecule move?How/why does a molecule move?

Among the 3NAmong the 3N--6 internal degrees of 6 internal degrees of 
freedom, freedom, bond rotationsbond rotations (i.e. changes (i.e. changes 
in dihedral angles) are the softest, and in dihedral angles) are the softest, and 
mainly responsible for the functional mainly responsible for the functional 
motionsmotions



Two types of bond rotational motionsTwo types of bond rotational motions

Fluctuations around isomeric statesFluctuations around isomeric states
Jumps between isomeric statesJumps between isomeric states

Most likely near native state



Definition of dihedral angles
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Spatial representation of the torsional mobility around the bond i+1.  
The torsional angle ϕi+1 of bond i+1 determines the position of the 
atom Ci+2 relative to Ci-1.  C'i+2 and C"i+2 represent the positions of 
atom i+2, when ϕi+1 assumes the respective values 180° and 0°.
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Rotational energy as a function of dihedral angle for a threefold 
symmetric torsional potential (dashed curve)  and a three-state 
potential with  a preference for the trans isomer (j = 180°) over the 
gauche isomers (60° and 300°) (solid curve),  and the cis (0°) state 
being most unfavorable.   



Rotational Isomeric States (Flory – Nobel 1974)

trans 0º ; cis 180º ; gauche = 120º (Flory convention)
trans 180º ; cis 0º ; gauche = 60 and 300º (Bio-convention)



BondBond--based coordinate systemsbased coordinate systems

Transformation matrix between frames i+1 and i

Virtual bond representation of protein backbone

cosϕi-cosθi sinϕisinθi sinϕi

sinϕi-cosθi cosϕisinθi cosϕi

0sinθicosθi

Flory, PJ. Statistical Mechanics of Chain Molecules, 1969, Wiley-Interscience – Appendix B



RamachandranRamachandran plotsplots

All residues Glycine

The presence of chiral Cα atoms in Ala (and in all other amino acids) is responsible for 
the asymmetric distribution of dihedral angles in part (a), and the presence of Cβ
excludes the portions that are accessible in Gly. 



Dihedral angle distributions of database structuresDihedral angle distributions of database structures

Dots represent the observed (φ, ψ)  pairs  in 310 protein structures in the 
Brookhaven Protein Databank (adapted from (Thornton, 1992))



Homework 1: Passage between Cartesian Homework 1: Passage between Cartesian 
coordinates and generalized coordinatescoordinates and generalized coordinates

Take a PDB file. Read the position vectors (XTake a PDB file. Read the position vectors (X--, Y, Y-- and Zand Z--coordinates coordinates 
–– CartesionCartesion coordinates) of the first five alphacoordinates) of the first five alpha--carbonscarbons

Evaluate the corresponding generalized coordinates, i.e. the bonEvaluate the corresponding generalized coordinates, i.e. the bond d 
lengths llengths lii (i=2(i=2--5), bond angles 5), bond angles θθii (i=2(i=2--4), and dihedral angles 4), and dihedral angles φφ33 and and 
φφ44 using the Flory convention for defining these variables.using the Flory convention for defining these variables.

Using the PDB position vectors for alphaUsing the PDB position vectors for alpha--carbons 1, 2 and 3, carbons 1, 2 and 3, 
generate the alpha carbons 4 and 5, using the above generalized generate the alpha carbons 4 and 5, using the above generalized 
coordinates and bondcoordinates and bond--based transformation matrices.  Verify that based transformation matrices.  Verify that 
the original coordinates are reproduced. the original coordinates are reproduced. 



Side chains enjoy additional degrees of freedomSide chains enjoy additional degrees of freedom



Amino acid side chains – Chi angles

All side chains

In α-helices



Secondary Structures: Helices and Sheets are Common Motifs

Helical wheel diagram



β-sheets: regular structures stabilized by long-range interactions

Parallel strandsAntiparallel strands



Topology diagrams for strand connections in β-sheets

Only those topologies where sequentially adjacent β-strands are antiparallel to each other are displayed.  (A) 12 different 
ways to form a four-stranded β−sheet from two β-hairpins (red and green), if the consecutive strands 2 and 3 are
assumed to be antiparallel.  Not all topologies are equally probable.  (j) and (l) are the most common topologies, also 
known as Greek key motifs; (a) is also relatively frequent; whereas (b), (c), (e), (f), (h), (i) and (k) have not been 
observed in known structures (Branden and Tooze, 1999). 

Schematic view of a β-barrel fold formed by the combination of 
two Greek key motifs, shown in red and green, and the 
topology diagram of the Greek key motifs forming the fold 
(adapted from Branden and Tooze, 1999)



Contact Contact MapsMaps DescribeDescribe ProteinProtein TopologiesTopologies



Harmonic Oscillator ModelHarmonic Oscillator Model

Rapid movements of atoms about a valence Rapid movements of atoms about a valence 
bondbond
Oscillations in bond anglesOscillations in bond angles
Fluctuations around a rotational isomeric stateFluctuations around a rotational isomeric state
Domain motions Domain motions –– fluctuations between open fluctuations between open 
and closed forms of enzymesand closed forms of enzymes



Harmonic Oscillator ModelHarmonic Oscillator Model

A linear motion: Force scales 
linearly with displacementF = - k x

The corresponding equation of motion is of the form

m d2x/dt2 + k x = 0

The solution is the sinusoidal function x = x0sin(ωt+φ)
where ω is the frequency equal to (k/m)1/2, x0 and φ are 
the original position and phase. 



Energy of a harmonic oscillatorEnergy of a harmonic oscillator

wherewhere v = v = dx/dtdx/dt = = d d [[x0sin(ωt + φ)]/dt = x0ω cos(ωt +φ)
EEKK = = ½½ mmxx00

22ωω22 coscos22((ωωt+t+φφ) = ) = ½½ mmωω22((xx00
22--xx22))

(because x = x0 sin(ωt + φ)  or x2 = x0
2 [1- cos2(ωt+φ)] x0

2 cos2(ωt+φ) = x0
2-x2)

Potential energy: Potential energy: EEPP = = ½½ kxkx22

Kinetic energy: Kinetic energy: EEKK = = ½½ mvmv22

Total energy: Total energy: EEPP + E+ EKK= = ½½ kxkx00
22

Always fixed



Rouse chain model for Rouse chain model for macromoleculesmacromolecules
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Connectivity matrixConnectivity matrix

Vtot = (γ/2) [ (ΔR12)2  + (ΔR23)2  + ........ (ΔRN-1,N)2 ]

= (γ/2) [ (ΔR1 - ΔR2)2  + (ΔR2 - ΔR3)2   + ........                          (1) 



Homework 2: Potential energy for a system of Homework 2: Potential energy for a system of 
harmonic oscillatorsharmonic oscillators

(a)(a) Using the components Using the components ΔΔXiXi, , ΔΔYiYi and and ΔΔZiZi of of ΔΔRRii, show that , show that EqEq 1 (Rouse 1 (Rouse 
potential) can be decomposed into three contributions, corresponpotential) can be decomposed into three contributions, corresponding to ding to 
the fluctuations along xthe fluctuations along x--, y, y-- and zand z--directions:directions:

VVtottot = V= VXX + V+ VYY + V+ VZ. Z. 
wherewhere

(b)(b) Show that Show that eqeq 2 can alternatively be written as2 can alternatively be written as

V = γ ½ ΔXT Γ ΔX

VX = (γ/2) [ (ΔX1 - ΔX2)2  + (ΔX2 - ΔX3)2   + ........ (2)         

where ΔXT = [ΔX1 ΔX2 ΔX3.....ΔXN], and ΔX is the corresponding column vector.
Hint: start from eq 3, obtain eq 2.

and similar expressions hold for Vy and Vz. 

(3)



Consider a network formed of beads/nodes (residues or groups 
of residues) and springs (native contacts)

Residues/nodes undergo Gaussian fluctuations about their 
mean positions – similar to the elastic network (EN) model of 
polymer gels (Flory)

III. Understanding the physics

Harmonic oscillators Harmonic oscillators Gaussian distribution of fluctuationsGaussian distribution of fluctuations

W(ΔRi) = exp{ -3 (ΔRi)2/2 <(ΔRi)2>}



Proteins can be modeled as an ensemble of harmonic oscillators

Gaussian Network Model - GNM



Molecular Movements Molecular Movements 

Physical properties of gases Physical properties of gases –– a short review (a short review (BenedekBenedek & & VillarsVillars, Chapter 2) , Chapter 2) 

Ideal gas law:  PVM = RT
PV = NkT
PV = nRT

where Vwhere VMM is the molar volume, T is the absolute temperature, R is the gais the molar volume, T is the absolute temperature, R is the gas s 
constant (1.987 x 10constant (1.987 x 10--33 kcal/mol or 8.314 J/K), k is the Boltzmann constant, N kcal/mol or 8.314 J/K), k is the Boltzmann constant, N 
is the number of molecules, n is the number of moles = N/Nis the number of molecules, n is the number of moles = N/N00 , N, N00 is the is the 
AvogadroAvogadro’’s number. s number. 

Mean kinetic energy of a Mean kinetic energy of a moleculemolecule of mass m and its meanof mass m and its mean--square square 
velocity: velocity: 

<<½½ mvmv22>= (3/2) >= (3/2) kTkT <v<v22>= (3kT/m)>= (3kT/m)

vvrmsrms = <v= <v22>>½½ = (3kT/m)= (3kT/m)½½
Physi
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0.026 0.026 –– 0.260.26

(35 cm/s)(35 cm/s)

10108  8  -- 10101010

(5 x 10(5 x 1077 g/mol)g/mol)

VirusesViruses
(e.g. tobacco (e.g. tobacco 
mosaic virus)mosaic virus)

2.6 2.6 -- 262610104  4  -- 101066MacromoleculesMacromolecules

4744743232OO22

1880188022HH22

vvrmsrms ((m/sm/s))M (g/mol)M (g/mol)MoleculeMolecule

vvrmsrms = <v= <v22>>½½ = (3kT/m)= (3kT/m)½½

Root-mean-square velocities

Brownian motion
(Brown, 1827)

These numbers provide estimates on the time/length scales of fluctuations or Brownian motions



Equipartition law

< < ½½ mvmvxx
22 >= < >= < ½½ mvmvYY

22 >= < >= < ½½ mvmvZZ
22 >= >= ½½ kTkT

An energy of ½ kT associated with each degree of freedom

For a diatomic molecule, there are three translational (absolute), two rotational
degrees of freedom, and the mean translational energies are 

And the mean rotational energy is kT. For non interacting single atom molecules
(ideal gases), there are only translational degrees of freedom such that the 
total internal energy is

U = (3/2)kT  and specific heat is Cv = ∂U/∂T = (3/2) k  



Random WalkRandom Walk

PN(R, L) = (1/2N) N! / R! L!
Probability of R steps to the right and L 
steps to the left in a random walk of N steps

R + L = N
R – L = m PN(m) = (1/2N) N! /([(N + m)/2]! [(N – m)/2]!)

Probability of ending up at m steps away 
from the origin, at the end of N steps

Binomial  (or Bernoulli) Distribution

Properties of Binomial Distribution

(Npq)1/2Standard deviation 
NpqVariance 
NpMean 

N = 15
P(n|N)

n

=

http://mathworld.wolfram.com/BinomialDistribution.html



Gaussian form of Bernoulli distributionGaussian form of Bernoulli distribution

PN(m) = (1/2N) N! / {[(N + m)/2]! [(N – m)/2]!}

As m increases, the above distribution may be approximated by a continuous function

PN(m) = (2/πN)½ exp {-m2/2N} Gaussian approximation

Examples of Gaussianly distributed variables:
•Displacement (by random walk) along x-direction W(x) ≈ exp {-x2/2Nl2} where m=x/l
•Fluctuations near an equilibrium position W(r) ≈ exp {-3(Δr)2/2<(Δr)2>0}
•Maxwell-Boltzmann distribution of velocities P(vx) = (m/2πkt)½ exp (-½mvx

2/kT}
•Time-dependent diffusion of a particle P(x,t) = √[4πDt] exp(-x2/4Dt}

Length of 
Each step



Examples of Gaussianly distributed variables:

• Displacement (by random walk) along x-direction W(x) ≈ exp {-x2/2Nl2} where m=x/l

• Fluctuations near an equilibrium position W(r) ≈ exp {-3(Δr)2/2<(Δr)2>0}

• Maxwell-Boltzmann distribution of velocities P(vx) = (m/2πkt)½ exp (-½mvx
2/kT}

• Time-dependent diffusion of a particle P(x,t) = √[4πDt] exp(-x2/4Dt}


