
 
                                                     
 
        BBSI: “Lab work” for 6/5/07: Partial Diff. Eqs. 
 
 
1) Lattice discretization of the Diffusion Equation: operational details.  Consider 
simple diffusion on the interval 0<x<L subject to absorbing boundary conditions at 
x=0,L.  Thus, the probability distribution of diffusing particles obeys the 1D Diffusion 
Equation: 
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with  .  [D is the appropriate diffusion constant.] Let the NxN matrix 

 be defined as the banded matrix having -2 on the diagonal, 1 on the first band above 
and below the diagonal, and 0 elsewhere.  For example, for N=4: 
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Discretizing into an N-dimensional vector  such that 

, where  and is the grid spacing, 
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shown that the discrete analog of Eq. 1 is: 
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Eq. 2 can be directly integrated to give: 
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a) Setting L=1 and N=21, let 11 (0) 1p =  and all other components equal to 0. (This 
corresponds to placing a particle at the center of the box.)  Calculate and plot the time 
evolution of the probability distribution. [Hint: Use the result of Lab work 1 to 

exponentiate the matrix ( )
2

ND t
a

Δ .] 
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b) All the eigenvalues of  are negative.  Identify the least negative eigenvalue: call 
this 

(N)Δ
1λ  and the corresponding eigenvector 1vr .  Show that the approximation 
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becomes very accurate after short-time transients die off. 
 
 
2) Relaxation Method for solving the 2D Laplace Eq.  Given any analytic function 

( ) ( , ) ( , )f z u x y iv x y= +  of a complex variable z x iy= + , it can be shown that both u and 
v satisfy the 2D Laplace Equation.  That is,  
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and likewise for v.  [Note: Roughly speaking, an analytic function is one which can be 
represented as a sum of integral powers of its argument.] 
 
a) Pick an analytic function ( )f z  (your choice!).  Show that ( , ) Re( ( ))u x y f z=  satisfies 
the Laplace Eq. (3); also check that ( , ) Im( ( ))v x y f z=  satisfies the same equation. 
 
 
 
 

 

Fig. 1: Contour plot of function , 
which solves the 2D Laplace Eq. 
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b) Pick some function that satisfies the 2D Laplace Eq. (e.g., based on part a): denote this 
as    Pick a rectangular perimeter in the x-y plane (again, your choice).  [Note: An 
example is shown in Fig. 1.] 

( , )u x y

 
i) Using the known values of on the perimeter, use the Mathcad subroutine relax to 
compute an approximate solution to the Laplace Eq. in the interior region.  (The linear 
discretization index N is up to you, but check for convergence as described below.) 

u

 
ii) Make a contour plot of the function computed using relax in part i).  Compare this to 
the exact analytical solution obtained in part a).  Show that as N is increased, the 
agreement between the numerical and analytical solutions for improves.  (To see 
the convergence process more clearly, it may be useful to plot 

( , )u x y
( , )fu x y  vs. x , where fy  is 

a fixed value of y in the interior region.) 
 
 
3) Lattice discretization of the Diffusion Equation: derivation.  Returning to problem 
1, derive the discretization of the diffusion Eq. [1] that is given in Eq. [2]. 
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