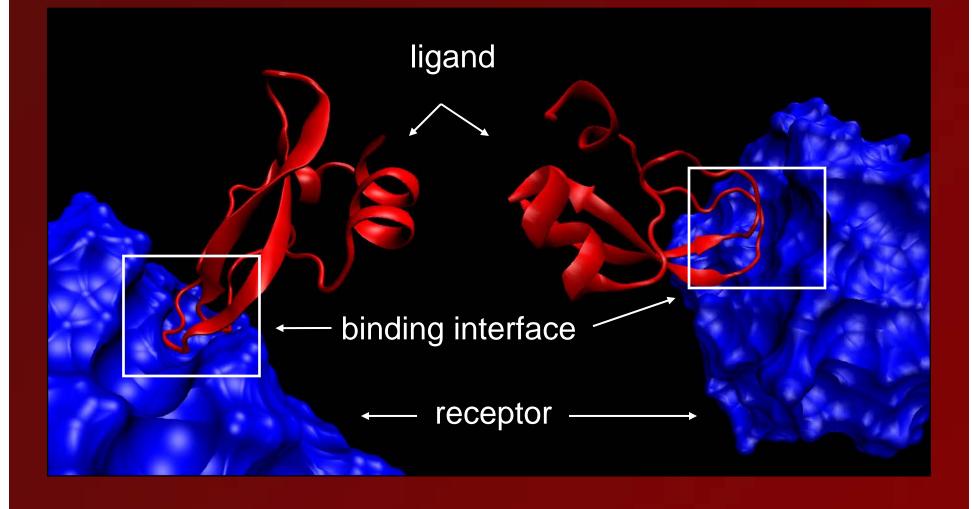
Anchor residues in protein-protein interactions


Deepa Rajamani, Spencer Theil, Sandor Vajda, and Carlos Camacho

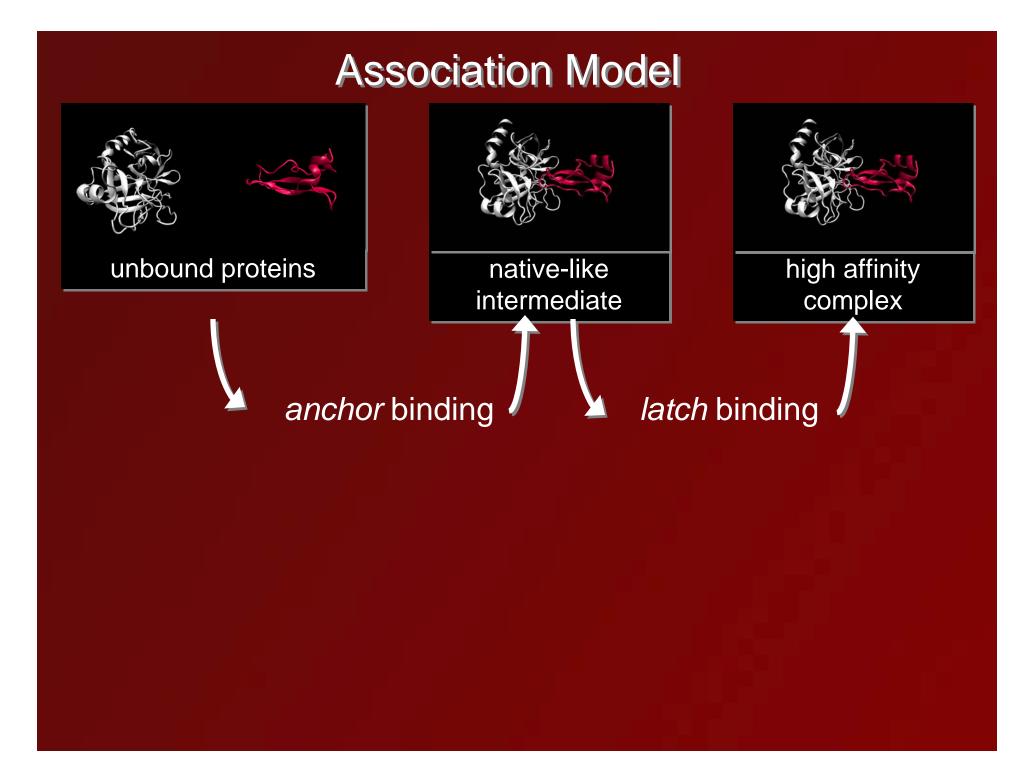
PNAS 2004

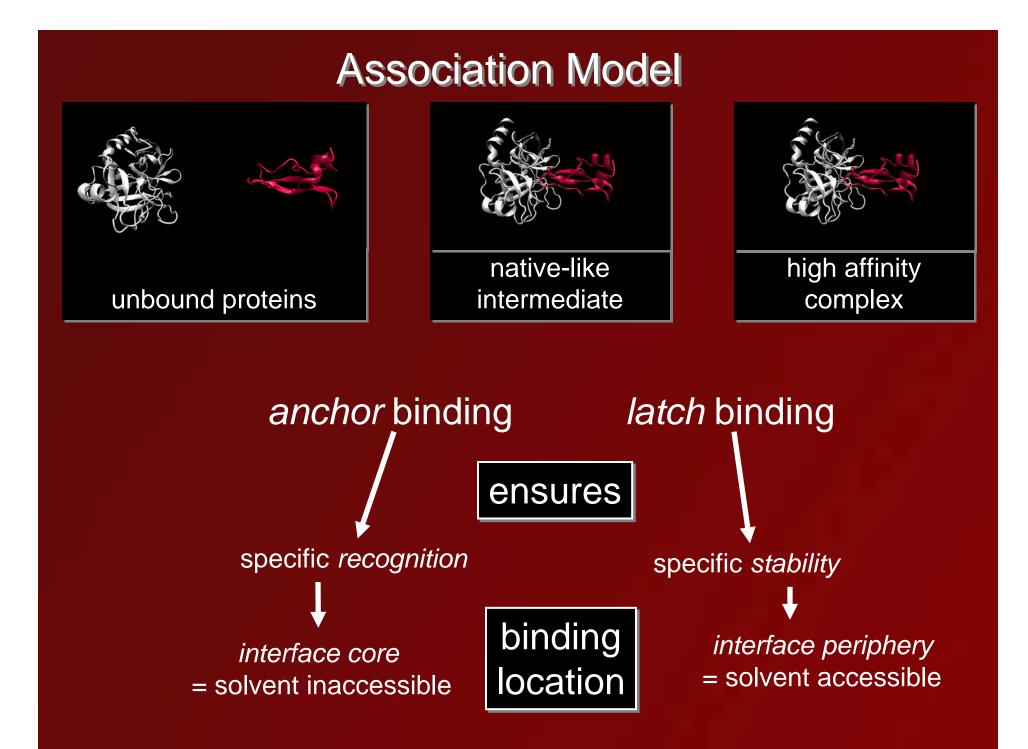
Anchor residues in protein-protein interactions

". . protein interactions are critically dependent on just a few residues, or hot spots, at the binding interface."

How do proteins bind to each other?

How do binding proteins. . .?


- specifically recognize
- minimize kinetic costs
- maintain stability

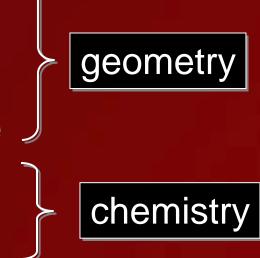

Solution

- anchor residues
- latch residues

Terms:

- <u>s</u>olvent-<u>a</u>ccessible <u>s</u>urface <u>a</u>rea $\Delta SASA^{\alpha} = SASA^{\alpha} - SASA^{\alpha\beta}$
- unbound vs. complex (bound) conformation
- native-like ~ bound-like
- native-like intermediate
- low affinity vs. high affinity
- "lock-and-key" (rigid) vs. "induced fit" (flexible)
- rotamer conformations

Procedure


- Identified anchor residues in proteinprotein complexes (interface core)

 Compared MD-simulated conformations (unbound) to bound

- Identified latch residues at (interface periphery)

Identifying (defining) anchors

- fully buried after binding
- largest ∆SASA value
- generally on ligand surface
- mostly polar or charged group: Arg, Lys etc.

Complex PDB ID code	Receptor/ligand (PDB ID code)	Anchor ResID	A SASA, Å ²	ΔG_i (rank), kcal/mol
Enzyme/inhibitor complexes				
1PPE	Trypsin/CMT-I	Arg-5	205.9	-11.3 (1)
1AVW	Trypsin/soybean inhibitor	Arg-563	202.7	-13.2 (1)
1BRC	Trypsin/APPI (1AAP)	Arg-15	198.8	-11.9 (1)
1CGI	a-Chymotrypsinogen/PSTI	Tyr-18	186.7	-8.6 (1)
1TGS	Trypsinogen/PSTI	Lys-18	169.7	-11.9 (1)
1TAB	Trypsin/BBI	Lys-26	167.7	-10.5 (1)
2PTC	β-Trypsin/PTI	Lys-15	163.8	-9.9 (1)
2SIC	Subtilisin BPN/Inhibitor	Met-70	159.4	-6.8 (1)
$1 DFJ^*$	RI/ribonuclease A	Tyr-433	159.0	-2.4 (13)
2SNI	Subtilisin novo/CI2 (2CI2)	Ile-56	148.4	-7.7 (1)
1UGH^*	UDG/UGI	Leu-272	146.9	-5.4 (3)

Table 1. Predicted anchor residues in 39 complexes

Complex PDB ID code Enzyme/inhibitor	Receptor/ligand (PDB ID code)	Anchor ResID	A SASA, Å ²	∆G _i (rank), kcal/mol	-
complexes					
1PPE	Trypsin/CMT-I	Arg-5	205.9	-11.3 (1)	
1AVW	Trypsin/soybean inhibitor	Arg-563	202.7	-13.2 (1)	
1BRC	Trypsin/APPI (1AAP)	Arg-15	198.8	-11.9 (1)	
1CGI	a-Chymotrypsinogen/PSTI	Tyr-18	186.7	-8.6 (1)	
1TGS	Trypsinogen/PSTI	Lys-18	169.7	-11.9 (1)	anchors are (usually) largest contributors to
1TAB	Trypsin/BBI	Lys-26	167.7	-10.5 (1)	binding free energy
2PTC	β-Trypsin/PTI	Lys-15	163.8	-9.9 (1)	
2SIC	Subtilisin BPN/Inhibitor	Met-70	159.4	-6.8 (1)	
1DFJ $*$	RI/ribonuclease A	Tyr-433	159.0	-2.4 (13)	
2SNI	Subtilisin novo/CI2 (2CI2)	Ile-56	148.4	-7.7 (1)	
1UGH [*]	UDG/UGI	Leu-272	146.9	-5.4 (3)	

Table 1. Predicted anchor residues in 39 complexes

Enzvme/inhibitor

complexes

2960

1124

ILCHI

Complex PDB Receptor/ligand (PDB ID Anchor SASA, ΔG_i (rank), MD ± Rotamer ID code code) ResID Å² kcal/mol 7% library

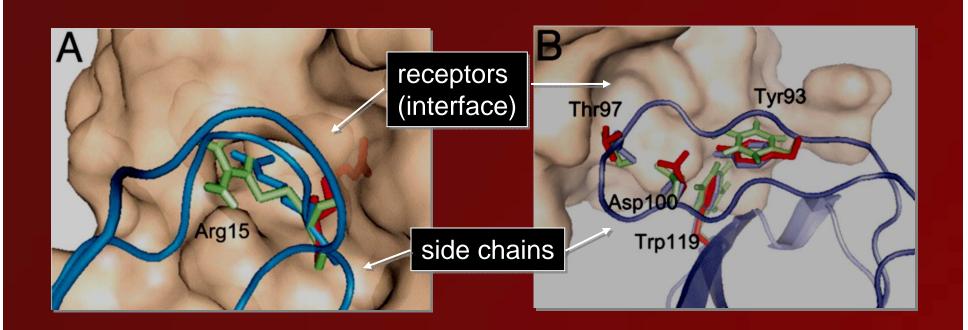
IPPE CLOSER' LOOK at ** two * identified IAVW Trypsin/soybean inhibitor IBRC Trypsin/APPI (IAA anchors* IBRC Trypsin/APPI (IAA anchors* ICGI a-Chymotrypsinogen/PSTI

Trypsinogen/PSTT 160 andest contributor Trypsin/BB1 1.vs-26 ITAB Ľ(†7) -105(1 oinding i ree enero 2PTC 8-Trynsin/PT L.vs-15 163 -9.9(1)

Subtilisin BPN/Inhibitor Met-70 159.4 -6.8 (1)

UDG/UGI Leu-272 146.9

Rl/ribonuclease A Tyr-433 159.0


Subtilisin novo/Cl2 (2Cl2) 1le-56

148.4 -7.7 (1) 37

Q6.6

54(3)

Native-like. %

- Receptors (large) are surface rep.
- Protein (ligand) side chains are cartoon rep.
- Anchors are in stick form

blue = complex crystal structure

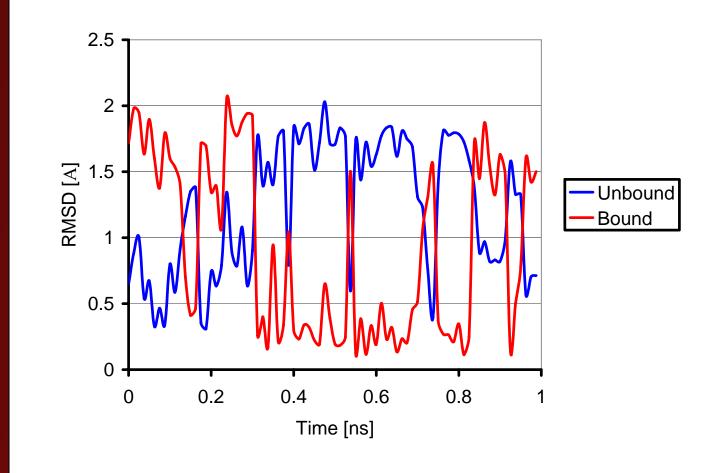
red = unbound crystal structure

green = most common simulation conformation

AAA	The set of the se
 single anchor residue (∆SASA > 100 Ų) bound-unbound structural change 	- native structure resembles unbound conformation - inflexible - multiple residues have significant △SASA (< 100 Å ²⁾

blue = complex

red = unbound green = simulation


Outline

- Identified anchor residues in proteinprotein complexes

 Compared MD-simulated conformations (unbound) to bound

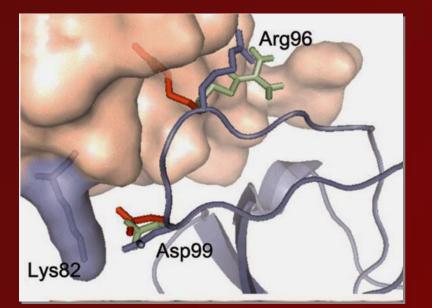
- Identified latch residues at binding periphery

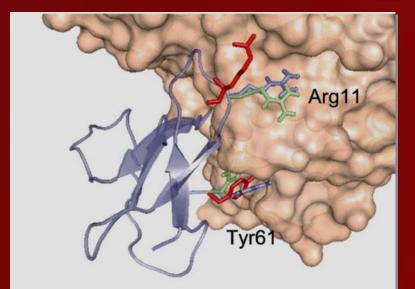
MD simulation

Outline

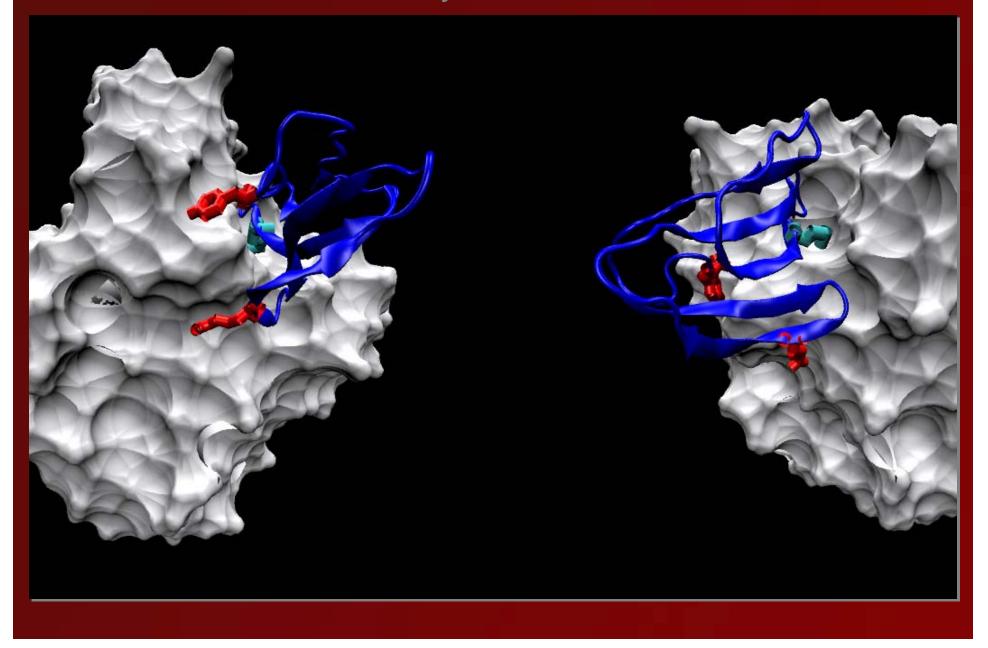
- Identified anchor residues in proteinprotein complexes

- Compared MD-simulated conformations (unbound) to bound


- Identified latch residues at binding periphery


Latches

- lock complex after encounter complex formation
- "relatively free to adjust",
- 30-60% buried
- on either molecule


flexible-flexible pair

flexible-rigid pair

Lock and Key AND Induced Fit

Conclusions

- bumpy interface
- specificity and recognition by anchors
- large $\triangle SASA =$ few secondary anchors
- high affinity (stability) by latch side chains