# Pressure-calcium relationships in perfused mouse hearts

#### Guy A. MacGowan, Jonathan A. Kirk, Caroline Evans and Sanjeev G. Shroff

*AJP - Heart* 290:2614-2624, 2006. First published Jan 13, 2006; doi:10.1152/ajpheart.00979.2005

Casey Overby May 31, 2007 BBSI Journal Club Presentation

#### Outline

- Purpose
- Questions
- Anatomy and Physiology of the Heart
- Protocol 1: Frank-Starling
- Protocol 2: Mechanical Restitution
- Model-based Analysis
- Questions Answered
- Conclusion

#### Purpose

 Characterize the relationship between pressure and intracellular free calcium in the perfused mouse hearts

#### Questions

- Q1: Can peak developed pressure change significantly without change in the peak systolic intracellular free calcium?
- Q2: Is the late component of lengthdependent activation absent?
- Q3: What are the determinants of pressure relaxation?

#### Cardiac Anatomy and Cardiac Cycle



Cardiac Cycle

Systole:

1. Isovolumic contraction

2. Ejection

#### Diastole:

Relaxation
 Early
 Isovolumic

4. Filling

- a) Early, rapid
- b) Late, diastasis



#### Role of Calcium

Calcium is required for contractile activation



<u>Video</u>

Bers, C<sup>2+</sup> Transport in Cardiac Myocytes *(Circ Res.* 2000;87:275-281.)

#### Methods Used

- Isolated perfused heart system (Langendorf)
  In vitro preparation of hearts
- Flourescence measurements
  - Calcium sensitive fluorescent dye rhod-2 was used to record pairs of LV pressure and [Ca]<sub>i</sub>

## **Protocol 1: Frank Starling**

- Frank-Starling mechanism: The more the ventricle is filled with blood during diastol, the greater the volume of ejected blood during systolic contraction
- Excitation-Contraction Coupling: A mechanism to explain how preload influences contractile force
  - Length dependent activation:
    - ↑ sarcomere length =>
    - ↑ TnC calcium sensitivity =>
    - ↑ the rate of cross-bridge attachment and detachment

Examined result of changes in ventricle volume at a fixed stimulation interval



#### Protocol 1: Results



Determine if changes in morphology and/or magnitude occur with changes in LV volume



#### Protocol 2: Mechanical Restitution

- Examine single-beat changes in stimulation interval at a fixed ventricle volume
  - Fixed LV volume (V<sub>max</sub>)
  - Pressure and flouresence data recorded for..
    - Steady-state contractions at the control period interval (CPI) of 240 ms
    - Single-beat perturbation of the test period interval (TPI) at 200, 400, 600 and 800 ms



## Protocol 2 Results



Table 1. Summary of data from the mechanical restitution protocol

|                                | Interval, ms            |                 |                         |                         |
|--------------------------------|-------------------------|-----------------|-------------------------|-------------------------|
|                                | 200                     | 240 (control)   | 400                     | 600                     |
| Pressure data                  |                         |                 |                         |                         |
| P <sub>sys</sub> , mmHg        | $102.9 \pm 4.3$         | $106.5 \pm 4.0$ | $123.9 \pm 4.7 \dagger$ | $133.3\pm5.1\dagger$    |
| P <sub>dia</sub> , mmHg        | $28.5 \pm 1.7$          | $28.4 \pm 1.7$  | $29.2 \pm 1.7 \pm$      | $29.6 \pm 1.9 \pm$      |
| →P <sub>dev</sub> , mmHg       | 74.4±4.2                | 78.1±4.0        | 94.7±4.9†               | $103.8 \pm 5.5 \dagger$ |
| →dP/dt <sub>max</sub> , mmHg/s | 3,028±138               | 3,108±123       | $3,657 \pm 148 \dagger$ | 3,960±155†              |
| dP/dt <sub>min</sub> , mmHg/s  | $-1,916\pm107$          | $-1,982\pm102$  | $-2,148\pm105$ †        | $-2,159\pm105$ †        |
| $T_{\rm rise-P}$ , ms          | $26.2 \pm 1.0 \ddagger$ | $26.7 \pm 1.0$  | $27.1 \pm 1.1$          | $27.2 \pm 1.2$          |
| $T_{\rm relax-P}$ , ms         | 43.1±2.9                | 43.8±3.0        | 49.0±3.6†               | 53.6±4.4†               |
| Calcium data                   |                         |                 |                         |                         |
| [Ca] <sub>i-sys</sub> , nM     | 948±59*                 | 990±63          | $1,009\pm63$            | $1,094 \pm 72^{+}$      |
| [Ca] <sub>i-dia</sub> , nM     | $365 \pm 14*$           | $381 \pm 15$    | $375 \pm 15$            | $394 \pm 15$            |
| →[Ca] <sub>i-dev</sub> , nM    | $582\pm54$              | 610±57          | 633±58                  | $700 \pm 66 \dagger$    |
| →[Ca] <sub>i-area</sub> , nM·s | 24.8±2.3                | $25.3\pm2.1$    | 29.8±2.7†               | $34.0\pm2.9\dagger$     |
| $T_{\rm rise-Ca}$ , ms         | 8.3±0.3                 | $8.4 \pm 0.4$   | 8.2±0.4                 | 8.3±0.4                 |
| $T_{\rm relax-Ca}$ , ms        | 79.9±4.2                | $82.5 \pm 3.6$  | 91.6±5.2                | $105.9 \pm 5.1 \dagger$ |

### Protocol 2 **Results Cont.**

Examine morphological changes in LV pressure and [Ca]<sub>i</sub> signals individually





[Ca]<sub>i</sub>

#### Model-Based Analysis

 Used to obtain additional insights into dynamics of pressure-calcium relationships

#### Methods Used

- 4 state model
  - Used to predict pressure wave form for a given calcium transient





Time (s)

#### **Questions Answered**

• Q1: Can peak developed pressure change significantly with a minimal (or no) change in the peak systolic intracellular free calcium?

#### Yes, (Results of Protocol 1)

• Q2: Is the late component of length-dependent activation absent?

Yes, Load independent (Results of Protocol 1)

• Q3: What are the determinants of pressure relaxation?

Slower pressure relaxation can be explained in terms of slower calcium relaxation. (Results of Protocol 2)

#### Conclusions

- Mouse myocardium appears to be unique in that significant changes in peak developed pressure can occur with little or no change in the peak of the calcium transient
- Unlike other mammalian species, pressure relaxation is load independent and primarily governed by calcium removal
- Exercise caution while extrapolating findings from mouse models to the human setting