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Summary 

MiRNAs are a class of endogenous small RNAs that are thought to negatively regulate 
protein production. Aberrant expression of many miRNAs is linked to cancer and other 
diseases. Little is known about the factors that regulate the expression of miRNAs. We 
have identified numerous regulatory elements upstream of miRNA genes that are likely 
to be essential to the transcriptional and post-transcriptional regulation of miRNAs. 
Newly identified regulatory motifs occur frequently and in multiple copies upstream of 
miRNAs. The motifs are highly enriched in G and C nucleotides, in comparison to the 
nucleotide composition of miRNA upstream sequences. Although the motifs were 
predicted using sequences that are upstream of miRNAs, we find that 99% of the top-
predicted motifs preferentially occur within the first 500 nucleotides upstream of the 
transcription start sites of protein-coding genes; the observed preference in location 
underscores the validity and importance of the motifs identified in this study. Our study 
also raises the possibility that a considerable number of well-characterized, disease-
associated transcription factors of protein-coding genes contribute to the abnormal 
miRNA expression in diseases such as cancer. Further analysis of predicted miRNA–
protein interactions lead us to hypothesize that transcription factors that include c-Myb, 
NF-Y, Sp-1, MTF-1, and AP-2α are master-regulators of miRNA expression. Our 
predictions are a solid starting point for systematic elucidation of causative basis for 
aberrant expression patterns of disease-related (e.g., cancer) miRNAs. The identification 
of the miRNA regulatory motifs was facilitated by a new computational method, K-Factor. 
K-Factor predicts regulatory motifs in a set of functionally related sequences, without 
relying on evolutionary conservation. 
 
Synopsis 
MicroRNAs (miRNAs) are unusually small RNAs that are thought to control the 
production of proteins in the cell. Recent studies have linked miRNAs to several types of 
cancers. Several studies strongly suggest that miRNAs could be useful as diagnostic 
and prognostic markers of various cancers. Thus, although miRNAs appear to have 
opened up a new chapter in cancer biology, the fundamental question regarding why 
miRNAs are strongly associated with diseases such as cancer remain unclear. Here, the 
authors endeavored to systematically identify the factors that regulate miRNA 
biogenesis. The authors first identified a large number of DNA sequence elements that 
are characteristic of miRNA genes, using a new computational method named K-Factor. 
The sequence elements were then used to match known protein binding sites to identify 
specific proteins (transcription factors) that regulate miRNA biogenesis.  Based on their 
observations, the authors put forward the hypothesis that a number of known 
transcription factors are primarily responsible for the aberrant regulation of miRNAs in 
cancer and other diseases.  
 
Introduction 

MicroRNAs (miRNAs) are endogenous non-protein-coding RNAs that are thought to 
negatively regulate gene expression[1–4]. Although hundreds of human miRNAs have 
been discovered, the functions of most miRNAs are unknown[5–7]. MiRNAs are present 
in organisms as diverse as viruses, flies, worms, humans, and plants, where they 
regulate fundamental cellular processes such as cell differentiation, cell proliferation, and 
apoptosis[8–16]. Computational predictions supported by experimental evidences 
indicate that miRNAs regulate a large fraction of metazoan genes[17–27]. Aberrant 
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expression of miRNAs is linked to diseases such as cancer[6,11,14,16,28–38]. A recent 
study of global expression levels of miRNAs in various cancers indicates that miRNA 
expression patterns are generally more useful than messenger RNA (mRNA) profiles to 
classify tumors[39]. A clear understanding of the miRNA pathway is thus necessary to 
unveil the role of miRNAs in gene regulation and their causal effects on complex genetic 
diseases.  
 
Little is known about the transcription and post-transcriptional processing of miRNA 
genes. Approximately 25% of miRNAs are located in introns of protein-coding genes and 
are likely to be transcribed along with their host genes. Multiple transcription start 
sites[40] within such genomic regions may lead to autonomous transcription of miRNAs 
and their host protein-coding genes. Studies indicate that miRNA genes are generally 
transcribed from their own promoters by RNA Polymerase II[41,42]. However, the 
possibility that a number of miRNA genes may be transcribed by other RNA 
polymerases (e.g., pol III) cannot be excluded[43,44]. In the nucleus, miRNA genes are 
transcribed into primary transcripts (pri-miRNA) that are generally thought to be several 
thousand bases in length[45,46]. The pri-miRNAs are cleaved into shorter, ~60 
nucleotide (nt) stretches of stem-loop-forming transcripts (pre-miRNA) by an assembly of 
Drosha, an RNase III enzyme and its cofactor DGCR8[47]. Following nuclear processing 
by Drosha, pre-miRNAs are exported to the cytoplasm where they are cleaved and 
processed by another RNase III enzyme, Dicer to generate mature miRNAs[2].  
 
Several lines of evidence imply that the information for transcription and sequential 
processing of miRNAs is embedded in the upstream regions of miRNAs. First, a recent 
study using chromatin immunoprecipitation, coupled with DNA microarrays, suggested 
that at least one of the three transcription factors (TFs), OCT4, SOX2, and NANOG 
regulates the transcription of 14 miRNA genes. Specific sequence elements upstream of 
miR-1, miR-223, and miR-17 are also known to interact with specific TFs[13,48,49]. A 
computational scan of upstream regions of miRNA genes in nematodes provided 
evidence for a sequence motif that is present upstream of almost all independently 
transcribed nematode miRNA genes[50]. It is reasonable to assume that a number of 
miRNA TFs are sequence-specific and bind to the upstream regions of miRNAs at select 
sites. Hence, the TF binding sites (TFBS) and other cis-regulatory motifs (CRMs) that 
are upstream of miRNAs are crucial to the regulation of the expression of miRNAs. 
 
Several computational methods have been developed to identify CRMs of protein-coding 
genes [51–54]. The computational methods that identify CRMs in a set (“input”) of 
upstream gene sequences can be classified into two distinct strategies. One class of 
methods relies on previously characterized CRMs to identify similar motifs that occur in 
the input set. The second class of methods is based on de novo identification of 
regulatory elements. Both methods frequently make use of evolutionarily conservation of 
candidate CRMs to increase the accuracy of their predictions. De novo identification of 
CRMs has the advantage of predicting novel CRMs that may be missed by other 
methods[55–60]. In particular, de novo methods, such as FastCompare[59] and 
HexDiff[58], are useful to identify sequences of defined length, termed k-mers (e.g., 
hexamers, k=6), that frequently occur upstream of transcribed sequences.  
 
We endeavored to develop a de novo method to discover and study the characteristics 
of CRMs that are upstream sequences of human miRNAs. De novo method, 
FastCompare[59], identifies functionally relevant k-mers by comparing the frequency 
distribution of k-mers in the set of input sequences of interest to an appropriate 
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“background model” (e.g., randomly generated set of sequences[61]). The choice of the 
background model is context dependent[56] and the interpretation of the resulting 
observations must be based on a clear understanding of the background model. For 
example, the hexamer AAAAAT is 543 times more abundant than CGCGTA in the 
human X chromosomal sequence. However, the over-representation of these motifs 
based on a background model of randomly generated sequences may also be 
interpreted as a mere outcome of genome expansion[62–64].  We chose a background 
model that closely reflects the evolution of genome by making use of sequences 
arbitrarily extracted from the human genome. 
 
To date, no computational method has been applied to systematically study the 
regulatory motifs that control the biogenesis of human miRNA genes. In this report, we 
build upon the concept of using k-mers to reliably identify CRMs that control the 
transcription and post-transcription of miRNAs. We investigated whether CRMs of 
human miRNA genes may be discovered using a new method, K-Factor. To help 
accurately identify k-mer-based CRMs that are likely to be biologically relevant, we 
incorporated the intrinsic distribution of k-mers in genomes of interest into K-Factor. For 
a given genome, K-Factor detects over-represented k-mers in a set of sequences (e.g., 
upstream miRNA sequences), based on a background model of many sets of sequences 
that are randomly extracted from the genome of interest. We applied K-Factor to identify 
TFBS in human miRNA upstream sequences. In summary, our work detects CRMs 
upstream of human miRNA sequences, identifies specific miRNAs that are likely 
regulated by CRMs, and predicts TFs that regulate specific miRNAs by matching 
predicted CRMs to known TFBS. We also find that the majority of the CRMs predicted 
for miRNA genes are also preferentially located towards the known transcription start 
sites of protein-coding genes. 
 
Results 

Upstream sequences of miRNAs contain highly overrepresented motifs 
To identify k-mers that are over-represented in upstream regions of miRNA genes, we 
first analyzed the 10 kilobase (kb) regions that are immediately upstream of 214 
representative human pre-miRNA sequences using K-Factor (k = 5, 6, 7, 8, and 9). We 
compared the number of predictions for the upstream miRNA sequences (“signal”) to 
that of the control sequences (“noise”) that were identical in length and consisted of 
approximately the same mono-nucleotide composition (A:T:C:G = 0.26:0.28:0.23:0.23) 
as the 10 kb miRNA upstream regions (Table S1). K-factor generally predicted many 
more motifs for k-mers of size six to nine in upstream sequences of miRNA sequences 
than in control sequences (Figure 1). It is important to realize that upstream protein-
coding sequences (UPS) are regulated by common proteins, such as the protein 
components of the RNA Polymerase II complex, and hence will share many common 
regulatory elements. Such commonly occurring regulatory motifs will lead to the over-
estimation of noise and hence an underestimation in the accuracy of the predictions. 
However, we chose to use UPS as a control set to provide added confidence to our 
predictions and to compare the distribution of k-mers in upstream miRNA sequences 
versus protein-coding genes. In summary, our data indicate that miRNA upstream 
regions generally contain more overrepresented regulatory motifs in comparison to 
protein-coding genes. 
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Seemingly due to their small size, pentamers did not yield statistically significant signal 
(Methods) based on the UPS dataset (Figure 1A). Although the signal to noise ratio 
(SNR) values that are calculated based on UPS dataset are likely to underestimate the 
accuracy of K-Factor, very few (14) pentamers could be classified as over-represented 
in miRNA upstream regions. On the contrary, hundreds of hexamers and longer k-mers 
were overrepresented in regions that immediately precede miRNA genes (Figure 1B - 
D). For k-mers larger than five, K-Factor scores above 2.5 was generally sufficient to 
obtain statistically significant signals.  

Motifs that are overrepresented upstream of miRNAs are also preferentially 
located within 1 kb of protein-coding genes 
We hypothesized that there may be common characteristics between k-mers that are 
overrepresented in miRNA upstream sequences and those of upstream protein-coding 
genes, because both miRNAs and protein-coding genes are generally transcribed by 
RNA Polymerase II[41,42]. Since motifs such as the TATA box occur immediately 
upstream of protein-coding genes, we reasoned that if the predictions are accurate, at 
least some of the motifs must occur immediately upstream of protein-coding genes. To 
our surprise, irrespective of the k-mer size, the majority (~99%) of the ~400 top predicted 
motifs were preferentially located within the first 500 nts upstream of the genomic 
locations of protein-coding genes (Figure 2, Figures S1 to S5). Even more surprising 
was that a significant number of motifs occurred most profusely within the first 200 nt 
upstream of protein-coding genes. As a control, we also analyzed the distance 
distribution of an equal number of randomly selected motifs that occurred in miRNA 
upstream regions (Figures S6 to S10). Comparison of the distribution of the predicted 
motifs and control motifs clearly demonstrate that the predicted motifs play a major role 
in the transcription of protein-coding genes. We note that all predicted motifs are 
significantly enriched in G and C nucleotides (Figure 3A), and the observed enrichment 
of GC pairs is not a consequence of the nucleotide composition of miRNA upstream 
sequences (Figure 3B, Table S1).  

Predicted motifs are evolutionarily conserved 
We investigated whether the top predicted motifs were also overrepresented in the 
upstream regions of miRNAs of mouse and opossum. Based on the top ranking 50 
hexamers in each species we found that the motifs significantly overlapped in 
human─mouse (34/50) and human─opossum (28/50) comparisons. The likelihood of 
obtaining the observed or greater number of hexamers common in human─mouse and 
human─opossum comparisons are estimated at 1.2 x 10-59 and 1.7 x 10-44, respectively 
(Methods). Moreover, among the top 50 motifs of miRNA upstream sequences of the 
human, mouse, and opossum genomes, 22 hexamers overlapped across all three 
species. Similarly, we also analyzed the conservation patterns of longer k-mers.  
 
Since the estimation of statistical significance does not consider the evolutionary 
relationship between the genomes, we also performed another validation experiment 
using control motifs. We generated 100 sets of 50 control motifs that were equally as 
abundant (Methods) as the predicted motifs in miRNA upstream regions of mouse and 
analyzed their evolution with respect to the predicted motifs in human. We did not detect 
any overlap between the predicted human motifs and any of the 100 sets of control 
motifs in mouse. Additionally, we generated a single set of 50 human motifs that were 
equally abundant as the predicted human motifs and studied the evolution with respect 
to the aforementioned 100 sets of 50 control motifs in mouse. The average number of 
overlap in human─mouse comparison was 1.8 with a standard deviation of 2.2. Taken 
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together, the predicted motifs are strongly conserved in evolution and the observed rate 
of evolutionary conservation is much higher than what can be explained by the 
sequence conservation of human and mouse miRNA upstream regions. 
 
 Although the overlap between the predictions across human─mouse and 
human─opossum were statistically significant, the number of commonly occurring motifs 
decreased significantly with increasing lengths of k-mer. For instance, the comparison of 
the top 50 9-mer motifs of human and opossum yielded just four conserved motifs 
(100% sequence identity). Thus, subsequences of size six appeared to be an “optimal” 
size for the prediction of regulatory motifs because hexamers manifest strong 
overrepresentation in upstream miRNA regions, are well conserved across species, are 
preferentially located towards the genomic locations of protein-coding genes, and thus 
are the shortest k-mers that appear to be sufficient to predict CRMs. Therefore, in order 
to identify TFs that interact with the predicted motifs and to identify specific miRNAs that 
were regulated by TFs, we focused our analysis on predicted hexamers. 

Known TFs interact with predicted hexamers  
The evolutionary preservation of a significant fraction (22/50) of the predicted human 
miRNA motifs in distantly related species (mouse and opossum) suggested that the 
conserved motifs are intolerant to mutations. We probed whether such motifs 
correspond to binding sites of known sequence specific TFs. The 22 hexamer motifs 
were scanned against the TRANSFAC[65] database of human TFBS (Methods) to 
identify TF regulatory elements that match the predicted motifs (Figure 4A). As a control 
experiment, we generated 100 sets of 22 control motifs that were equally as abundant 
as the predicted motifs in miRNA upstream regions (Methods) and scanned them 
against TRANSFAC (Figure 4B). We identified 135 interactions between predicted 6-
mers and known TFs. The control experiment yielded an average of 0.83 TF–hexamer 
interactions (σ = 2.8), which corresponded to a SNR of 162:1.  
 
Little is known about the functions of the predicted hexamer CRMs in the context of the 
longer host TFBS. The top predicted hexamer motif is the inverse palindromic sequence 
CGCGCG which is also an evolutionarily conserved CRM. The heterodimeric complex of 
the two transcription factors, E2F4 and DP2 is known to bind each half of the 
palindromic CRM (CGC and GCG)[66]. The TF families that include E2F and DP 
proteins regulate the expression of multiple cell cycle genes and are well conserved 
across mammals and many other eukaryotes[67]. E2Fs can function as transcriptional 
activators (e.g., E2F1) or repressors (e.g., E2F4)[68]. The consistent overrepresentation 
of the motif across three distantly related genomes raises the possibility that the E2F 
and DP family of proteins modulate miRNAs that regulate cell cycle. Members of a set of 
clustered miRNAs, miR-17-5p and miR-20a, are known to downregulate the expression 
E2F1, a transcriptional target of c-Myc that promotes cell cycle progression[13]. MiRNAs 
are also required for stem cells to bypass the normal G1/S checkpoint in cell cycle[69]. 
We predict E2F1, MITF, C-MYB, and p53 as TFs that regulate miRNAs via the 
CGCGCG motif. Interestingly, all four TFs are involved in the regulation of cell 
cycle[68,70–72]. We also notice that CGCGCG is predominantly located within the first 
1000 nts of the putative transcription start sites of protein-coding genes (Figure 2B). 
Although transcription start sites of miRNA genes are not known, due to uncertainty of 
the length of the miRNA primary transcript, they are likely not very distant from the 
genomic locations of miRNA precursors. Therefore, to identify specific miRNAs that are 
regulated by the motif, we used a conservative criterion that at least three CGCGCG 
motifs occur within a contiguous stretch of 2000 nts in the upstream regions (<10,000 nt) 
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of miRNA  precursors. We identified 25 distinct miRNA loci (Table S2) corresponding to 
42 pre-miRNAs that satisfied the criterion. Majority of the miRNAs are either expressed 
in neurons or are associated with specific stages of cell development. We speculate that 
several of the 233 pre-miRNAs in seven loci (miR-9-1, -9-2, -17, -18a, -18b, -19a, -19b-
1, -19b-2, -20a, -20b, -25, -92-1, -92-2, -93, -96, -106a, -106b, -124a, -182, -183, -345, -
363, and -486), the mature miRNA transcripts of which are expressed during various 
developmental stages, are involved in modulating cell cycle. We have also identified five 
instances of CGCGCG within a short region of 1700 nts upstream of miR-20a that is 
known to regulate E2F1[13]. Remarkably, 11 miRNAs (miR-9, -92b, -96, -101, -124a, -
129, -132, -135b, -191, -212, and -425) that correspond to eight distinct miRNA loci are 
highly expressed in brain. The coincidence of the presence of the CGCGCG motif in the 
upstream region of miRNAs and the restricted expression patterns of these miRNAs 
indicate that this motif is a fundamental factor in the transcription of many miRNAs. 
 
Another predicted CRM, GGGGCG occurs three consecutive times within a known 29 
nucleotide (nt) long binding site of KLF5[73] (Figure 4C).The Kruppel-like factor 5 
(KLF5) is known to bind to sequences that contain GGGGCG[73]. KLF5 is a transcription 
factor that is involved in cellular proliferation and cancer[74–76]. The KLF family of 
proteins can be transcriptional activators or repressors and they are thought to bind to 
similar DNA sequences that are rich in GC content. A 15 nt long sub-region of the 
repetitive segment within the known KLF5 binding site is near perfectly conserved in the 
upstream region (<10,000 nt) of six different evolutionarily unrelated miRNAs (Figure 
4C). In addition, a 16 nt long motif, GGGGCGGGGGCGGGAG is perfectly conserved 
between three miRNAs (miR-433, miR-146b, and miR-96); this motif is located within the 
first 5 kb upstream of the three miRNAs. Across the human genome, the 16-mer occurs 
at a frequency of 6.3 instances in every 1 billion bases. Based on the observed 
frequency of the motif in the genome, only 0.007 (6.3 x 10-9 x 214 x 5000) of the miRNAs 
are expected to contain the motif by chance within our dataset. Therefore, the co-
occurrence of the motif in three different miRNA sequences is likely relevant to the 
regulation of their expression patterns. Moreover, an analysis of the location of 
GGGGCGGGGGCG motif in 50 kb upstream of all protein-coding genes revealed that 
the motif is preferentially located within the first 200 nt region of the genomic locations of 
55 genes (Figure 4D). Additionally, our previous analysis of the location of the 
subsequence GGGGCG in upstream regions of protein-coding genes also underscores 
the functional relevance of this motif (Figure S4 [p35]). Taken together, our study 
suggests that GGGGCG is involved in the transcriptional control of several miRNAs and 
numerous protein-coding genes, which are potentially regulated by Sp1 and KLF family 
of transcription factors.  

TF–motif interactions exert combinatorial control on miRNA expression  
The predicted k-mers are associated with the transcriptional and post-transcriptional 
regulation of miRNAs. However, the presence of a single k-mer in the upstream region 
of a miRNA is likely insufficient to control miRNA expression. Therefore, we used the 
cumulative K-Factor score (Methods) to identify specific miRNAs that are regulated by 
the top 50 hexamer motifs. As a control experiment, an equivalent analysis was 
performed using 100 sets of 50 control motifs (Methods). Using the representative set of 
miRNA upstream sequences, we identified 18 miRNAs that are likely regulated by 
specific CRMs at the cumulative score threshold of 20. In contrast, the control 
experiment yielded an average of 0.5 sequences (σ = 0.8) at the threshold of 20 (SNR of 
36:1). Encouraged by a reasonably high SNR, we extended the analysis to upstream 
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sequences (2 kb) of all known 460 human miRNA genes. The extended analysis 
predicted 48 miRNAs that are regulated by the predicted CRMs (Table S3).  
 
The predicted TF-CRM and CRM-miRNA interactions enabled us to link known TFs to 
48 miRNAs via their common predicted CRMs (Table S3). Among the predicted miRNA–
protein interactions, the TFs c-Myb, NF-Y, and Sp-1 are predicted to be involved in the 
regulation of all 48 miRNAs (Table S4). The aforementioned observation led us to 
characterize several of the predicted TFs as putative master regulators of miRNA 
expression (Table S4). We find that combinatorial interactions of several TFs are 
generally involved in regulating the expression of miRNAs. For example, miR-132, 
previously shown to be differentially upregulated in six solid cancer types (breast, colon, 
lung, pancreas, prostate, and stomach carcinomas)[77] is predicted to be combinatorially 
regulated by 24 CRMs. In addition to the upregulated expression of miR-132 in solid 
tumors, it is present in embryonic stem cells, and normal brain[78,79]. In cortical 
neurons, miR-132 was identified through a genome-wide screen as a transcriptional 
target of the redox-sensitive TF, cAMP-response element binding protein (CREB)[80]. 
We have predicted the redox-sensitive TFs AP-1, AP-2, c-Myb, EGR-1, EGR-2, MTF-1 
and Sp-1 as potential TFs of miR-132 (Table S3). In rat duodenal mucosa, EGR-1 is 
known to form a molecular complex containing CREB and all six other redox-sensitive 
TFs[81]. Taken together, our results suggest that in addition to CREB, miR-132 is 
regulated by coordinated interactions of other redox-sensitive TFs.  
 
Discussion 

We developed and applied a new method, K-Factor to upstream miRNA sequences to 
identify CRMs that regulate the biogenesis of miRNAs. We extended our analysis to 
identify candidate TF binding sites and TFs that mediate the regulation of specific 
miRNAs. Our results indicate that miRNA expression is regulated by numerous 
regulatory elements that frequently occur in multiple copies in the upstream sequences 
of miRNAs. The preference of the predicted motifs to occur towards the genomic loci of 
protein-coding genes suggests that transcription of miRNAs and protein-coding genes 
are controlled by similar factors. The transcription factors that regulate miRNAs also 
appear to be numerous. It is conceivable that the dynamic range of expression of 
miRNAs is a direct outcome of the combinatorial regulation of many transcriptional 
activators and suppressors rather than the control exerted by one or a few TFs.  
 
We focused our analysis on a set of high confidence predictions, which likely represent 
core miRNA regulatory elements, to identify putative transcription factors that regulate 
miRNA expression. Our study suggests that a considerable number of disease-
associated TFs of protein-coding genes may significantly contribute to the abnormal 
expression of miRNAs. Although mechanisms such as altered genomic copy numbers of 
miRNAs[82] and irregularities in the miRNA processing pathways are also known to 
cause aberrant expression of miRNAs[83], most transcription factors that we predicted to 
regulate miRNAs are strongly associated with cancer. Thus, the deregulation of miRNAs 
by transcription factors may be a root cause of aberrant miRNA expression in cancer. 
Additionally, it appears that the transcription of many miRNAs is controlled by 
coordinated interactions of multiple TFs with miRNA CRMs. Thus, it is conceivable that 
the broken interactions within the complex network of TF-miRNA regulation will lead to 
the down- or up-regulation of miRNAs. Our predictions will thus be a valuable starting 
point to systematically elucidate the causative basis of aberrant expression patterns of 
miRNAs in cancer. A focused study of expression of specific sets of miRNAs that are 
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associated with cancer and their predicted TFs will provide valuable insights into cancer 
progression and miRNA biology. For instance, the most interesting predicted 
transcriptions factors (c-Myb, NF-Y, Sp-1, MTF-1, and AP-2α) can be knocked down via 
RNAi and the expression profiles of miRNAs can be measured using a microarray 
analysis. 
 
We found that a significant fraction of the top-predicted sequence motifs for human 
miRNA genes are also enriched among the upstream miRNA regions in mouse and 
opossum. We demonstrated that the overlap is highly statistically significant, based on a 
commonly used hypergeometric model[59]. The significant overlap between the 
predicted CRMs of the three genomes strongly suggests that the sequence-level 
evolution of the motifs is constrained, an indication that the motifs that we predicted are 
crucial to miRNA biogenesis. We observed that the content of guanine and cytosine 
nucleotides among the predicted motifs is very high. The percentage of G and C 
nucleotides within the top 50 hexamers are 48.0% and 42.6%, respectively. In stark 
contrast to the approximately uniform nucleotide composition of the miRNA upstream 
sequences (Table S1), the combined proportion of GC base pairs (90%) is significantly 
higher than the AT base pairs (9.3%) for the predicted hexamer motifs. Similar 
proportion of GC base pairs was also observed for longer k-mer motifs. Moreover, the 
GC content for the 22 evolutionarily conserved hexamers was 96.2%, higher than the 
aforementioned ratios. What might be the evolutionary and biological significance of the 
high proportion of G and C nucleotides among the miRNA regulatory elements? 
Elevated GC-content is a hallmark of the transcriptionaly active regions of the 
mammalian protein-coding genes[84]. In addition, evolution of miRNAs in distantly 
related mammals (human, mouse and opossum) has preferentially preserved the GC-
rich CRMs. Therefore, it appears that the GC-rich miRNA transcriptional regulatory 
elements are more resistant to mutations. The resistance of these regulatory elements is 
likely a direct outcome of the sequence specificity of their protein interactors, such as 
evolutionarily well-conserved TFs that operate in key biological pathways that are 
conserved across mammals. 
 
We note that the predicted CRMs do not represent all possible motifs that regulate 
miRNA expression; instead they represent motifs that are identified based on the degree 
of overrepresentation in miRNA upstream sequences. It is also possible that the some of 
the upstream sequences used in this study for multiple miRNAs are not representative of 
their promoter regions. The length of the upstream sequences of miRNAs used in this 
study to closely estimate the transcriptionally active upstream region of miRNAs is larger 
than the typical core-promoter regions of protein-coding genes. However, due to the lack 
of a clear understanding of the range of lengths of the miRNA primary transcripts, we 
chose to err on the length of their putative promoter sequence because we noticed that 
K-Factor was able to identify biologically relevant motifs in 10 kb long sequences. The 
use of 10kb sequences also provides an opportunity to detect enhancer or silencer 
elements that may be involved in miRNA expression but are located outside the core-
promoter region. In addition, the predictions are similar for much shorter miRNA 
upstream sequences. For instance, among the top 50 hexamers predicted using 10 kb 
regions, 38 motifs are identical to that of motifs predicted using 1 kb upstream 
sequences of non-intronic miRNAs. However, errors can occur due to intronic or 
intergenic miRNAs that may be transcribed along with their host or neighboring genes. 
There is currently no foolproof method to avoid such errors because it is not clear 
whether certain miRNAs are transcribed as autonomous units in certain circumstances 
(e.g, leaky polyadenylation signals of neighboring genes[40]) and as part of larger 
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polycistronic transcripts[85] in other circumstances. In addition, CRMs can be located 
several thousand nucleotides away from miRNA sequences and do not neither need to 
be present within the same strand of DNA nor in a contiguous stretch of DNA. Despite 
such shortcomings that have no clear immediate resolution, we have been able to 
predict novel motifs that are biologically relevant to the overall expression of miRNAs 
and protein-coding genes.  
 
The TFs that may direct the transcription of miRNAs via the predicted CRMs were 
identified by matching CRMs to known TF binding sites. At a reasonably high SNR 
(36:1), we identified candidate TFs that bind specific regulatory elements. In particular, 
we identified an unusual 12 nt long tandem repeat of GGGGCG, that is likely bound by 
the family of KLF transcription factors. KLFs and Sp1-like proteins are a family of highly 
related zinc-finger proteins that are fundamental to the eukaryotic cellular transcriptional 
machinery[86]. Individual members of the family can function as transcriptional activators 
or repressors, depending on the promoters they bind and the co-regulators with which 
they interact. Such switches between activator and repressor states impose additional 
complexity on understanding the transcriptional regulation of miRNAs. The example of 
KLF5/Sp-1 TFs highlights the combinatorial interplay between different CRMs that will 
likely determine the tissue specific expression of miRNAs. Thus, although a simple 
correlation between global miRNA expression patterns and their regulatory motifs is 
highly desired, it may not be easily attained. However, if accurate miRNA and TF 
expression profiles are known in different cell-types, it may be possible to use machine 
learning methods to understand the functional synergy between the expression patterns 
of miRNAs, their CRMs, and their TFs. 
 
The complex interlinks between expression patterns of miRNAs, their CRMs, and their 
TFs are apparent in the transcriptional control of miR-132. We have identified 24 CRMs 
that may regulate the expression of miR-132. Why does such a large number of CRMs 
regulate miR-132? Sequence similarity searches indicate that miR-132 is well conserved 
across several vertebrate genomes[87]. In mammals, miR-132 is expressed in 
embryonic stem cells, cortical neurons, and is aberrantly regulated in several types of 
cancer. In zebrafish, miR-132 is expressed in adult female, caudal fin, and liver 
epithelium[88]. In addition to its known function of regulation of neuronal 
morphogenesis[80], miR-132 is predicted to downregulate more than 200 genes[19,26]. 
Taken together, it appears that miR-132 is a functionally important gene whose 
expression must be activated or repressed in several cell-types. Our results suggest that 
the expression of miR-132 is fine-tuned by the combinatorial interactions of several co-
expressed TFs. The expression of miR-132 in mammalian brain appears to be regulated 
by eight co-expressed, redox-sensitive TFs. Thus, it seems that the observed dynamic 
range miRNA expression is an outcome of the combinatorial interaction of multiple TFs 
to coordinately and selectively activate or repress miRNAs.  
 
In this study we analyzed the sequence elements and their protein interactors involved in 
the transcriptional and post-transcriptional regulation of miRNAs using a novel method, 
K-Factor. The central difference between K-Factor and many other computational 
methods used for the discovery of regulatory motifs is that K-Factor uses a species-
specific model to predict the most biologically relevant motifs. Namely, our method relies 
on the random extraction of sequences from the genome of interest. The accuracy of the 
predictions was estimated using three different control sets. The observation that the 
majority of the predicted motifs are preferentially located towards the transcription start 
sites of protein-coding genes further reinforces our findings. The K-Factor method can 
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be extended to predict regulatory motifs in any set of biological sequences of interest. K-
Factor score is a ratio that provides a simple intuitive awareness of the degree of 
enrichment of a given k-mer in a set of biologically related sequences, with respect to a 
random sample of sequences from the corresponding genome. Thus, a score of 1.0 for a 
given k-mer is generally an indication that the occurrence of the k-mer in a given set of 
input sequences is as frequent as in the random sample. In contrast, a K-factor score of 
3.0 suggests that, in comparison to the background evolution of the k-mer in the 
genome, the motif is approximately three times more over-represented in the input set of 
sequences. A preliminary java-based, platform independent version of K-Factor that can 
identify regulatory motifs in any functionally related sequences is available for download 
(http://www.johnlab.org/ K-Factor/index.html). 
 
Identification of miRNA targets in the 3’ UTR of protein-coding-genes could be a useful 
extended application of K-Factor. If miRNAs extensively mediate regulation of protein-
coding genes via the 3’ UTR of the corresponding mRNAs, as it is widely believed to be, 
it is possible that the over-represented motifs in 3’ UTRs are enriched in miRNA-binding 
sites. Additionally, the analysis of the 3’ UTRs of genes involved in processes such as 
development where miRNA expression is strongly observed, may also lead to clearly 
over-represented motifs that are preferentially complementary to miRNAs. We hope to 
conduct similar analyses in the near future.  
 
Methods 

MiRNA upstream sequences 
Human pre-miRNA sequences were downloaded from miRBase (March 2006)[87]. To 
eliminate sequence compositional bias introduced by evolutionarily related miRNAs, a 
subset of representative pre-miRNA sequences that shared no more than 80% 
sequence identity to other sequences in the set was curated. The representative dataset 
was mapped onto the human genome (NCBI build 35) to extract 10,000 nucleotides 
upstream of the miRNA genes. In cases where miRNA upstream regions overlapped 
due to proximally located miRNAs, we randomly retained one representative miRNA 
upstream region. The final dataset contained 214 human miRNA upstream sequences.  
 
All known human pre-miRNA sequences were scanned using BLAST[89] (E-value < 10-

10) against the genomes of mouse (Mus musculus) and opossum (Monodelphis 
domestica) to identify potential homologous pre-miRNAs. Potential homologs were 
selected based on the most significant BLAST hit. Representative mouse and opossum 
pre-miRNAs and their non-overlapping upstream sequences were subsequently 
extracted based on the procedure used for human pre-miRNAs. The number of 
upstream sequences identified in mouse and opossum genomes was 175 and 100, 
respectively. 

Identification of upstream miRNA-specific sequence motifs 
The K-Factor computational method is designed to identify regulatory sequences of 
length k (k-mers) that are embedded in a given set of user-defined DNA sequences, S of 
a specific genome, G. For a given number of sequences (nS) in the input set S, K-Factor 
executes the following steps. (1) m (m = 100) sets of sequences (reference sets Ri; i = 1 
.. m) are extracted from random locations in G. Each reference set in R consists of nS 
sequences that have length distribution that is identical to sequences in S. (2) The 
normalized frequency of all possible k-mers in S and each of the m sets in R are 
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calculated. For a given k-mer (ki), the normalized frequency, f(ki,G), is computed as the 
ratio of the number of occurrences of ki in a given set to the total number of nucleotides 
in the given set. The number of occurrences of ki is calculated by counting the number of 
non-overlapping instances of ki in each sequence. The number of sequences, N(ki,G) 
that contain ki is also determined. (3) Enrichment scores that measure the bias of each 
k-mer to preferentially occur in S with respect to each reference set in R are determined. 
The enrichment score for ki in S with respect to Ri is defined as the ratio of f(ki,G,S) to 
f(ki,G,Ri). (4) K-Factor score, K(ki,G,S) of each ki for S is computed as the average 
enrichment score of ki over all m sequence sets in R. (5) Two different Z-scores, 
Zf(ki,G,S) and ZN(ki,G,S) for each ki in S are calculated based on the average and 
standard deviation of f(ki,G) and N(ki,G) in R, respectively. (6) k-mer sequences above a 
predefined threshold of K-Factor score and Z-scores ( Zf, ZN ≥ 7.0) are predicted as 
regulatory elements in S. The Z-score cutoffs were chosen so that the observed 
difference between the occurrence of ki in S and its average distribution in R is 
statistically significant (one tailed p-value ≤ 10-10). For each k-mer in S, K(ki,G,S) can be 
calculated as: 
 

1 1
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The product in parenthesis corresponds to the average of the reciprocal frequencies of 
ki, for a given genome (Equation 1). To increase the speed of the K-Factor algorithm, 
the average can be pre-computed for each genome.  
 

Conservation of motifs in orthologous species 
Predicted regulatory sequence motifs in the upstream regions of human, mouse, and 
opossum miRNAs were analyzed to identify common k-mers that may be important for 
miRNA biogenesis. The significance of overlap of most enriched k-mers between two 
species were analyzed using a hypergeometric distribution. The probability of observing 
at least nc common k-mers between two independent sets of DNA sequence motifs that 
contain n1 and n2 k-mers in each was calculated as: 
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Prediction of transcription factor-motif interaction 
The predicted hexamer motifs were matched using their full sequences against known 
human TFBS in the TRANSFAC database[65]. To reduce the number of false matches 
that may occur by chance, we required that at least three predicted motifs matched a 
given TFBS. The proteins or protein complexes that bind to the matched binding sites 
were considered as candidate TFs to regulate miRNAs via the predicted CRM 
sequences. 

Cumulative K-Factor score 
We devised a strategy to identify specific miRNA sequences that are likely regulated by 
the predicted sequence motifs with in the given input set S. First, we selected input 
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sequences and CRMs so that the motifs occurred at least twice per 2 kb of each 
selected sequence, Si. For each selected CRM (kj), K-Factor scores K(kj,G,Si) were 
determined. Next, a cumulative score that incorporated the combinatorial interaction 
between selected CRMs that occur in Si was calculated. The cooperative score for Si 
was formulated as the sum of the natural logarithm of K(kj,G,Si) over all selected CRMs. 
Finally, sequences for which the cumulative score was above a predefined threshold 
were selected. 

Control sequences 
We used three different methods to generate control sequences to ensure reliability in 
the assessment of our predictions. Each control set was designed to precisely match the 
observed length distribution of the 214 human pre-miRNA upstream sequences. Each 
method generated 100 distinct sequence sets that contained a total of 21,400 
sequences (100 x 214). In the first method (UPS), 100 sets of control sequences were 
generated using immediate upstream protein-coding sequences of genes that were 
randomly selected from a list of 21,118 protein-coding genes[90]. In the second method 
(RGS), repeat-masked genome sequence that is devoid of known repeat elements was 
used to randomly extract control sequences (http://hgdownload.cse.ucsc.edu/ 
goldenPath/hg18/database/). Similarly, in the third method (GS), sequences were 
generated by the extraction of sequences from random locations of the complete 
unmasked genome sequence. K-Factor was applied to each of the 300 control sets, 
using the same reference sets (R) that were used to identify candidate CRMs in 
upstream regions of human miRNAs. The results for UPS, RGS, and GS were analyzed 
separately.  

Signal to noise ratio 
The signal to noise ratio (SNR) was calculated as the ratio of the number of predictions 
(Np) obtained for miRNA upstream sequences, to the average number (µ) of predictions 
for 100 control sequence datasets. The standard deviation (σ) for the number of 
predictions for the control sequence datasets was also determined. The observed signal 
was considered to be statistically significant (one tailed p-value of ≤ 0.001), if Np was at 
least 3.2σ units larger than µ. The control experiments involved the identification of: (1) 
K-Factor-predicted motifs in each of the 100 control datasets, based on several 
threshold scores; (2) TF–motif interactions, based on the top 22 K-Factor-predicted 
motifs of each control set; and (3) sequences that yielded cumulative K-factor scores 
greater than a pre-defined threshold.  

Control motifs 
Control motifs were generated to closely mimic the predicted motifs by extracting k-mers 
that matched the frequency of predicted motifs in the upstream regions of miRNAs. The 
frequencies were matched within a marginal difference of 1%. 
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Figures and Figure Legends 

 
Figure 1: Accuracy of K-Factor predictions in identifying CRMs that regulate miRNA 
biogenesis. The number of distinct CRMs predicted for biologically relevant miRNA upstream 
sequences and for 100 sets of miRNA upstream-like sequences (“control sequences”) are 
represented at various thresholds of K-Factor score (Zf, ZN ≥ 7.0) and five different values of k : k 
= 5 (A), 6 (B), 7 (C), 8 (D), and 9 (E). The error bars for each threshold of K-Factor score 
correspond to the standard deviation of the number of predictions for 100 control datasets 
generated using one of the three methods (UPS, RGS, and GS). UPS: Upstream protein-coding 
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sequences; RGS: Repeat-masked sequences; GS: Unmasked genome sequences. Note that the 
control sequence sets corresponding to RGS and GS yield no predictions (“noise”) for k-mer 
sizes 5, 6, and 7. 
 

 
 
Figure 2: Overrepresented k-mers in upstream miRNA sequences are preferentially located 
towards the genomic loci of protein-coding genes. Representative motifs show strong bias to 
occur near the genomic loci of protein-coding genes. The number of occurrences of CGCGG (A), 
CGCGCG (B), CGGCGGC (C), and GCGGGGCG (D) motifs are plotted at 200 nt intervals in the 
upstream regions (50 kb) of protein-coding genes. The number of occurrences of the motif in 
each 200 nt bin significantly increases towards the first 1000 nts that are directly upstream of the 
protein-coding genes (-1000 to 0 nt region).  
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Figure 3: G and C nucleotides strongly dominate the predicted motifs. Comparison of the 
top 50 predicted hexamers (A) and the 50 most abundant hexamers in miRNA upstream regions 
(B) illustrate that the observed abundance of G and C nucleotides in the predicted motifs is not a 
consequence of nucleotide bias in upstream miRNA sequences. 
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Figure 4: CRMs that mediate the transcription of miRNAs. (A) Network of CRMs that are 
over-represented in the upstream regions of human, mouse, and opossum miRNAs and their 
predicted TF interactors. (B) Numbers of predicted CRM-TF interactions for 22 evolutionarily 
conserved mammalian CRMs and 22 control motifs (Methods) in 100 control datasets. The error 
bar corresponds to the standard deviation of the number of predictions for the 100 control 
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datasets. (C) The known KLF5 binding site (KLF5_Site) has three tandem copies of the 
GGGGCG motif (red underscore). A 15 nt long subsequence of the known KLF5 binding site is 
near-perfectly conserved in six miRNA promoters (blue block). (D) The GGGGCGGGGGCGGG 
motif is also preferentially located towards the putative transcription start sites of protein-coding 
genes (also see legend to Figure 2). 
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Names and titles of each supporting information table and figure 

Table S1: Single nucleotide frequencies in the various datasets. 
Table S2: miRNA genes that contain atleast 3 occurrences of the motif, CGCGCG within 
a contiguous stretch of 2 kb in their upstream regions (<10 kb). 
Table S3: Hexamer motifs and TFs that are predicted to regulate specific miRNAs. 
Table S4: A prioritized list of TFs that regulate miRNAs. 
 
Figure S1: Locations of the top 100 predicted 9-mers in the upstream regions of protein-
coding genes. 
Figure S2: Locations of the top 100 predicted 8-mers in the upstream regions of protein-
coding genes. 
Figure S3: Locations of the top 100 predicted 7-mers in the upstream regions of protein-
coding genes. 
Figure S4: Locations of the top 100 predicted 6-mers in the upstream regions of protein-
coding genes. 
Figure S5: Locations of all (14) predicted 5-mers in the upstream regions of protein-
coding genes. 
Figure S6: Locations of 100 randomly selected 9-mers in the upstream regions of 
protein-coding genes. 
Figure S7: Locations of 100 randomly selected 8-mers in the upstream regions of 
protein-coding genes. 
Figure S8: Locations of 100 randomly selected 7-mers in the upstream regions of 
protein-coding genes. 
Figure S9: Locations of 100 randomly selected 6-mers in the upstream regions of 
protein-coding genes. 
Figure S10: Locations of 14 randomly selected 5-mers in the upstream regions of 
protein-coding genes. 
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