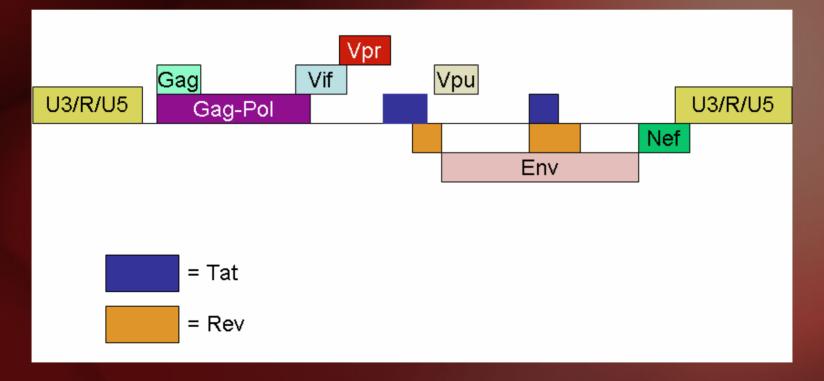
Sequence Analysis of Human Immunodeficiency Virus Type 1

Stephanie Lucas ^{1,2} Mentor: Panayiotis V. Benos ^{1,3} With help from: David L. Corcoran ⁴

1 Bioengineering and Bioinformatics Summer Institute, Department of Computational Biology, University of Pittsburgh 2Department of Biology, University of San Francisco 3Department of Computational Biology, University of Pittsburgh 4Departments of Computational Biology and Human Genetics, University of Pittsburgh

HIV-1 Facts

- Some Facts as of 2005...
 - There are 38.6 M people in the world living with HIV/AIDS
 - US has 1.2 M out of the 1.3 M living in N. America.
 - Kenya has 1.3 M, and sub-saharan Africa 24.5 M
- There is currently no successful therapy. Production of vaccine is difficult due to the high mutation rate of the virus. The effects are severe both economically (cost of care) and socially.

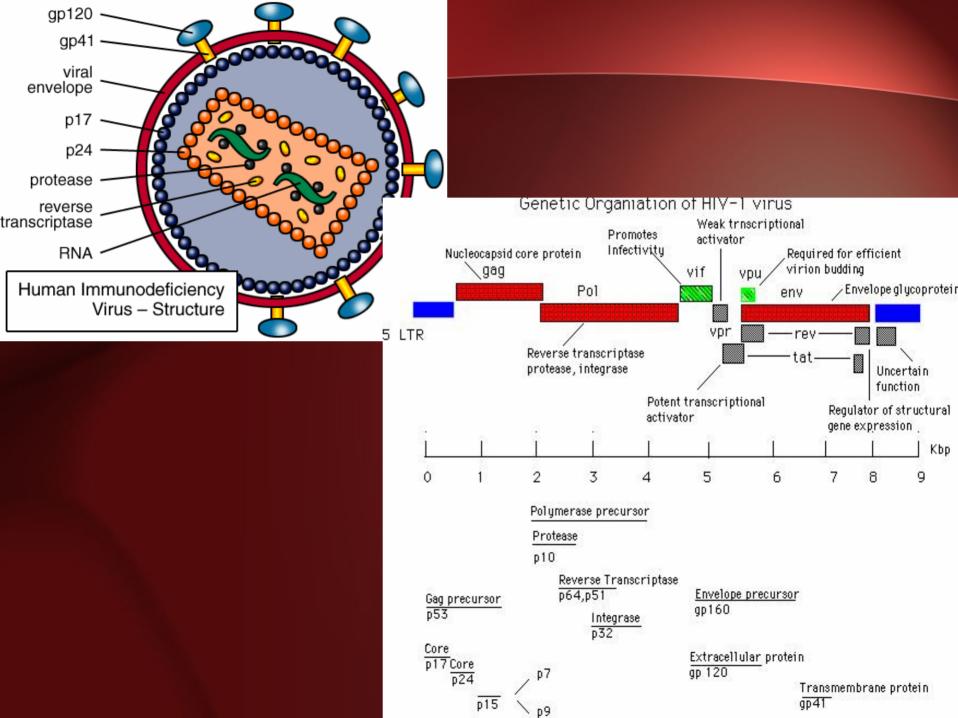


• We will study the evolution of different parts of the HIV-1 genome

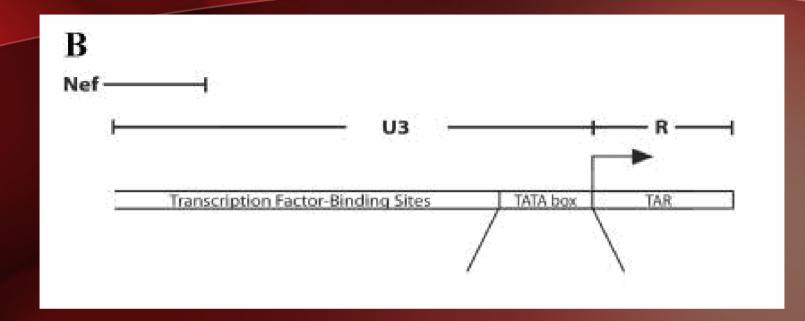
 Parts that evolve slower could act as potential vaccine targets

HIV-1 Genome

Reference Sequence is 9181 base pairs longContains 9 genes

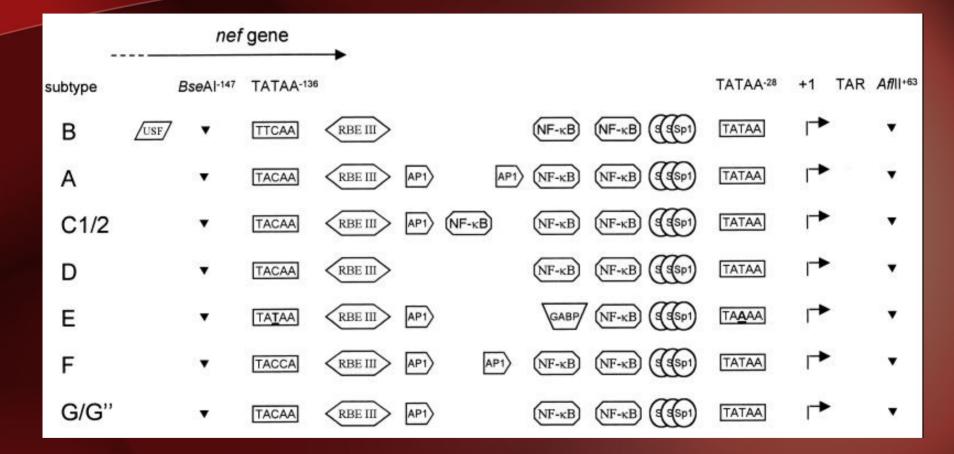


The Genes


- Gag: codes for internal structural proteins and capsid proteins
- Gag-Pol: codes for the three enzymes necessary for replication Vpr
- Vpu: virus protein U
- Tat: transactivator protein
- Rev: regulator of expression of virus protein

The genes cont'd

- Env: codes for the surface proteins gp120 and gp41 that protrude from the lipid envelope and attach to cellular receptors
- Nef: an enhancing factor
- Vpr: virus protein R
- Vif: virus infectivity factor



U3_R_U5 Region

•The U3_R region is the regulatory region and contains most of the transcription factor binding sites

Predicted TFBS

Overview of Research---Our Goals

• To track if there are any differential selective pressure on parts of the genome

Identify regions of higher/lower variability

Predict and confirm TFBS within the promoter region

Methods

Obtaining the sequences

- a. Looked up the Ref Seq from the database
- b. Searching in the public databases yielded 1,183 genomes
- c. Split the Ref Seq into individual genes and regulatory regions -coding/ regulatory regions only
- d. Removed overlapping sequences and Start/Stop codons

 There are differential constrains within individual bases
 As a consequence, 2 genes were not analyzed- TAT and GAG
 Start/ Stop codons are relatively invariable and may stray the conserved sequence count

e. Did a BLAST search against the 1,183 genomes to extract out each gene from the sequences and remove identical sequences- left with about 200 sequences

f. Align with Clustal W using the MEGA software package

The sequences were then ready for analysis...

Example CLUSTAL W

👫 Alignment Explorer	(C:\Documents and S	Settings\lucas\Desktop\SET	1 - aligned MEGA sequ	ences- ALL sequences, eve	n prolematic ones\align 2- <i>1</i>	MASWIF-alignment 2.mas)	_ 7 🛛					
Data Edit Search Alignm	ent Web Sequencer	Display Help										
🗅 📽 日 📽 🇮	🗟 🎆 🐨 💥 🥼	, 🛛 🗠 🛍 👗 🛍 🗙 💥	h 🗈 🎽) 🗛 🏘 🏘 🐴					
DNA Sequences Translated Protein Sequences												
		*	* * *	*	* * * * *							
gi 4205033 gb U6958	G G A T G C T A A A 1	FT <mark>ggtaataacaacatat</mark> t	G G G G <mark>T C T G C A T A C</mark> A G	GAGAAAGAGACTGGCATT	TGGGCCAGGGAGTCTCC	- ATAGAATGGAGGAAAAATAGATATAGC	ACACAAG <mark>T</mark> AGA(
gi 60651856 gb AY83	GGATGCTAAA1	FT <mark>ggtaataatgac</mark> atatt	G G G G <mark>T C T G C A T A C</mark> A G	GAGAAAGAGACTGGCATT	TGGGTC <mark>A</mark> GGG <mark>A</mark> GT <mark>C</mark> TCC	- ATAGAATGGAGGAAAAAGAGATATAGC	ACACAA <mark>gt</mark> aga(
gi 60651905 gb AY83		FT <mark>ggtaataacaacatat</mark> t	G G G G <mark>T C T G C A T A C</mark> A G	GAGAAAGGGACTGGCATT	TGGGTCAGGGAGTCTCC	- ATAGAATGGAGGAAAAAGAGATATAGC	ACACAAG <mark>T</mark> AGA(
gi 60652082 gb AY83	G	FT <mark>GGT</mark> AATAACAACATATT	G G G G <mark>T C T G C A T A C</mark> A G	GAGAAAGGGACTGGCATT	TGGGTCAGGGAGTCTCC	- ATAGAATGGAGGAAAAGGAGATATAGC	ACACAAG <mark>T</mark> AGA(
gi 60652044 gb AY83	G G A T G C T A A A 1	FT <mark>ggtagtaac</mark> aa <mark>cata</mark> tt	G G G G T C T G C A T A C A G	GAGAAAGAGACTGGCATT	TAGGTCAGGGAGTCTCC	- <mark>G T A G A A T G G A G G A A A A A G A G </mark>	ACACAAG <mark>T</mark> AGA(
gi 10436130 gb AF25	GGATGCAAAA1	FT <mark>ggtaataacaacata</mark> tt	G G G G T C T A C A T A C A G	GAGAAAGAGACTGGCATT	TGGGTC <mark>AGGGAGTCTCC</mark>	- ATAGAATGGAGGAAAAAGAGATATAGC	ACACAATTAGA(
gi 3511259 gb AF075		FTGGTAATAACAACATATT	G G G G T C T G C A T A C A G	G A G A A A G A G A C T G G C A T T	TAGGTCAGGGAGTCTCC	- ATAGAATGGAGGAAAAAGAGATATAGC	A C A C A A <mark>G T</mark> A <mark>G</mark> A (
gi 55275205 gb AY77		GTGGTAGTAACAACATATT	GGGGTCTGCATACAG	G A G A A A G A G A C T G G C A T T	TGGGTC <mark>A</mark> GGG <mark>A</mark> GTCTCC	- ATAGAA <mark>T</mark> GGAGGAAAGAGAGATATAGC	A C A C A A G T A G A (
gi 60651886 gb AY83		FTGGTAATAACAAC <mark>ATA</mark> TT	GGGGTCTGCATACAG	G A G A A A G A G A C T G G C A T T	TGGGTCAGGGAGTCTCC	- ATAGAATGGAGGAAAAGGAGATATAGG	ACACAAGTAGA(
gi 60652112 gb AY83		TTGGTAATAACAACATA TT	GGGGTCTGCATACAG	GAGAAAGAGACTGGCATT	TGGGTCAGGGAGTCTCC	- ATAGAATGGAGGAAAAGGAGATATAGC	ACACAAG <mark>T</mark> AGA(
gi 3193272 gb AF069		TTGGTAGTAACAACATATT	G G G G T C T A C A T A C A G	GAGAAAGAGACTGGCATT	TGGGTCAGGGAGTCTCC	- ATAGAATGGAGGAAAAGGAGATACAGC	ACACAAG <mark>T</mark> AGA(
gi 60544776 gb AY83		FT <mark>GGTAGT</mark> AACAACATATT	G G G G <mark>T C T G C A C</mark> A C A G	GAGAAAGAGACTGGCATT	TGGGTCAGGGAGTCTCC	- ATAGAATGGAGGACAAAGAGATATAGC	ACACAA <mark>gt</mark> aga(
gi 10436120 gb AF25		FT <mark>GGTAATAAC</mark> AACATATT	G G G G T <mark>C T A C A T A C</mark> A G	GAGAAAAA GACTGGCATT	TGGGTCAGGGAGTCTCC	- ATAGAATGGAGGAAAAAGAGATATAGC	ACACAA <mark>TT</mark> AGA(
gi 328030 gb M17449		FT <mark>GGTAATAAC</mark> AACATATT	G G G G <mark>T C T G C A T A C</mark> A G	GAGAAAGAGACTGGCAT T	TAGGTCAGGGAGTCTCC	- ATAGAATGGAGGAAAAAGAGATATAGC	ACACAA <mark>gt</mark> aga(
gi 4205051 gb U6959		FT <mark>GGTAATAAC</mark> AACATATT	G G G G <mark>T C T G C A T A C</mark> A G	GAGAAAGAGACTGGCATT	TGGGCCAGGGAGTCTCC	- ATAGAATGGAGGAAAAATAGATATAGA	ACACAGG <mark>T</mark> AGA(
gi 55275225 gb AY77		GTGGTAGTAACAACATATT	G G G G <mark>T C</mark> T G C A T A C A G	GAGAAAGAGATTGGCATT	TGGGTCAGGGAGTCTCC	- ATAGAATGGAGGAAAAAGGGATATAGC	ACACAA <mark>gt</mark> aga(
gi 60651827 gb AY83		FT <mark>GGTAATAAC</mark> AACATATT	G G G G <mark>T C T G C A T A C</mark> A G	GAGAAAGAGACTGGCATT	TGGGTCAGGGAGTCTCC	- ATAGAATGGAGGAAAAGGAGATATAGC	ACACAA <mark>gt</mark> aga(
gi 60544786 gb AY83	GGATGCTAGA(C T G G T A A T A A C A A C A T A T T	G G G G <mark>T C T G C A T A C</mark> A G	GAGAAAGAGACTGGCATT	TGGGTC <mark>ATGGAGT</mark> CTCC	- ATAGAATGGAGGAAAAGGAGATATAGC	ACACAA <mark>gt</mark> aga(
gi 328565 gb M17451		FT <mark>GGTAATAAC</mark> AACATATT	G G G G <mark>T C</mark> T G C A T A C A G	GAGAAAGAGACTGGCATT	TGGGTC <mark>A</mark> GGG <mark>A</mark> GT <mark>C</mark> TCC	- ATAGAATGGAGGAAAAGGAGATATAGC	ACACAA <mark>gt</mark> aga(
gi 3098582 gb AF049	GGATGCTAGA1	FT <mark>ggtagtaac</mark> aacatatt	G G G G <mark>T C</mark> T G C A T A C A G	GAGAAAGAGAATGGCATT	TGGGTCATGGAGTTTCC	- ATAGAATGGAGGAAAAGGAGCTATAGC	ACACAA <mark>gt</mark> aga(
gi 29119285 gb AY17		FTA <mark>GTAGTAAC</mark> AACATATT	G G G G <mark>T C T G C A A A C</mark> A G	GAGAAAGAGACTGGCATT	TGGGTC <mark>A</mark> GGG <mark>A</mark> GT <mark>CTCC</mark>	- ATAGAATGGAGGAAAAGGAGATATAGC	ACACAA <mark>gt</mark> aga(
gi 4204988 gb U6958		FT <mark>ggtaatagcaac</mark> atatt	G G G G T <mark>C T G C A T A C</mark> A G	GAGAAAGAGACTGGCATT	TGGGCCAGGGAGTCTCC	- ATAGAATGGAGGAAAAAGAGATATAGC	ACACAA <mark>gt</mark> aga(
gi 55925120 gb AY81		FT <mark>ggtaatagcaac</mark> atatt	G G G G <mark>T C</mark> T G C A T A C A G	GAGAAAGAGACTGGCATT	TGGGTCAGGGAGTCTCC	- ATAGAATGGAGGAAAAGGAGATATAGC	ACACAA <mark>gt</mark> aga(
gi 37677783 gb AY33		TTGGTAGTAACAACATA TT	G G G G T C T G C A T A C A G	GAGAAAGAGACTGGCATT	TGGGTCAAGGAGTCTCC	- ATAGAATGGAGGAAAAAGAGATATAGC	ACACAA <mark>gt</mark> aga(
gi 37677793 gb AY33	GGATGCTAGA1	FT <mark>GGTAGTAAC</mark> AACATATT	G G G G T <mark>C T G C A T A C</mark> A G	GAGAAAGAGACTGGCATT	TGGGTCAAGGAGTCTCC	- ATAGAATGGAGGAAAAAGAGATATAGC	ACACAA <mark>gt</mark> aga(
	<mark>g g a t g a t a g</mark> a 1	TTAGTAATAACAACATA TT	GGGGTCTGCATACAG	GAGAAAGAGACTGGCATT	TGGGTCAGGGAGTCTCC	- ATAGAATGGAGGAAAAAGAGATATAGC	ACACAAG <mark>T</mark> AGA(
gi 90960709 dbj AB2		TTGGTAATAACAAC TTATT	G G G G T C T A C A T A C A G	GAGAAAGAGACTGGCATT	TGGGTCAGGGAGTCTCC	- ATAGAATGGAGGAAAAAGAGATATAGC	ACACAA <mark>gt</mark> aga(
gi 10436111 gb AF25		TTGGTAATAACAACATA TT	G G G G T C T A C A T A C A G	GAGAAAGAGACTGGCATT	TGGGTCAAGGAGTCTCC	- ATAGAATGGAGGAAAAGGAGATATAGC	ACÁCAATTAGA(
gi 29119265 gb AY17		FTGGTAATAACAACATAT T	G G G G <mark>T C T G C A T A C</mark> A G	GAGAAAGAGACTGGCATT	TGGGTCAGGGAGTCTCC	- ATAGAATGGAGGAAAAAGAGATATAGC	ACACAA <mark>gt</mark> aga(
gi 4205042 gb U6959	AGATGCTAAT1	FTGGTAATAACAACATA TT	GGGGTCTGCATTCAG	GAGAAAGAGACTGGCATT	TGGGCCAGGGAGTCTCC	- ATAGAATGGAGGAAAAAGAGATATAGC	ACÁCAAGTAGA(
9-1 i 9-1	AGATGCTAAT1	TTGGTAATAACAACATA TT	GGGGTCTGCATTCAG	GAGAAAGAGACTGGCATT	TGGGCCAGGGAGTCTCC	- ATAGAATGGAGGAAAAAGAGATATAGC	ACACAAG <mark>T</mark> AGA(
gi 55925112 gb AY81	GGATGCTAAA1	TTGGTAATAGCAACAT ATT	GGGGTCTGCATACAG	GAGAAAGAGAC TGGCATT	TGGGCCAGGGAGTCTCC	- ATAGAATGGAGGAAAAGGAGATATAGC	ACACAAGTAGA(~ >					
	with 🔿 w/o Gaps											
	crosoft PowerPoint	Microsoft Excel - Step	🛅 align 2- MAS	MEGA 3.1	Alignment Explorer (C	/ 💀 🕄 🗘 🕫)) 🛜 🕌 🛄 11:24 AM					

Infinite Sites Neutral Model

- Developed by Kreitman and Hudson (1991)
- Focused on neutral (silent) mutations
 - Removes the functional constraints in order to focus on the genetic drift alone
 - Θ = level of polymorphism

$$\theta = 4N_e\mu$$

 Actual O value cannot be found because N and µ are difficult to obtain...

First we had to calculate the number of segregating sites per silent nucleotide (ps)...

 $p_{s} = S / n$ $\hat{\theta} = p_{s} / a_{1}$ $Var(\hat{\theta}) = Var(p_{s}) / a_{1}^{2}$

Where....

S= # silent segregating sites *n*= # possible silent sites

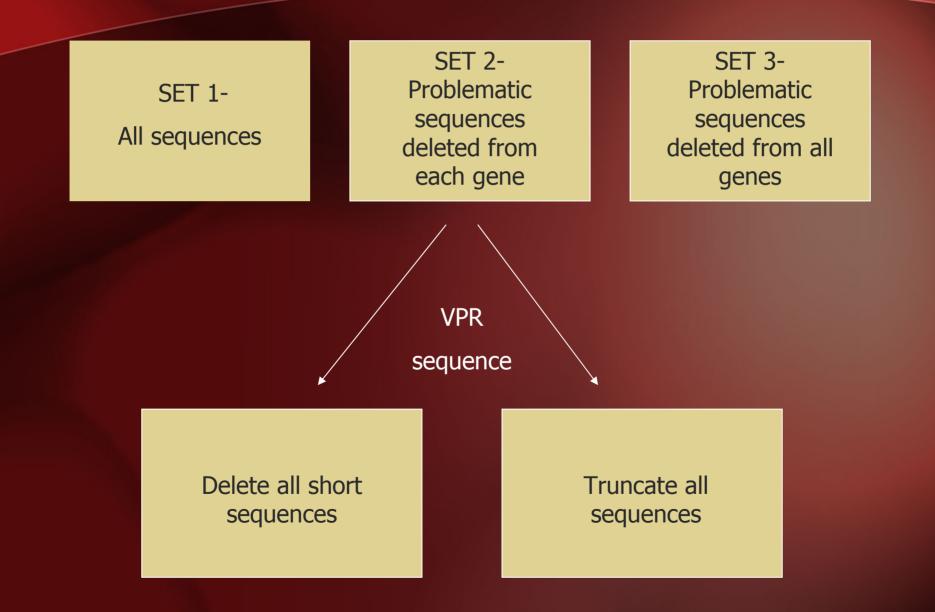
$$a_k = \sum_{x=1}^{m-1} x^{-k}$$

Calculate the variables...

Example sequence: Leu Gly Seq #1 CTG GGC Seq #2 CTG GGC Seq #3 CTA GGC Seq #4 CTT GGC

•The 3rd codon position is a potential silent site

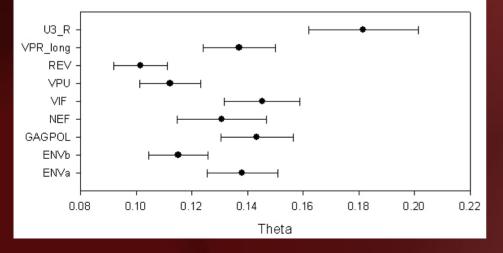
Kreitman and Hudson method S= 1 n=2 Counts whether or not a column of the


•Counts whether or not a column of the sequence is a silent site

Problems...


 Upon further investigation, we discovered that some of the gene sequences were nonfunctional due to mutation or premature stop codons

 We thought that this may influence the results and decided to create 3 sets of data and run each set through the script


Run the test with 3 different sets of data...

Results

Set 3 of New

Results Interpreted

 U3_R region is less constrained than the other regions (due to higher Θ values)

 VPU, REV, ENVb are more constrained than other genes (due to lower Θ values)

Comparison with other closely related species

- McDonald and Kreitman (1991)
- The idea is that the ratio of nonsynonymous to synonymous mutations within a species (polymorphisms) should be the same as the ratio between species if the mutations are neutral
- Used HIV-2, SIV-1, and SIV-2 in order to test this
- Although they were close relatives, the sequences were too different, and could not be compared

Instead we used the different subtypes of HIV-1 compared to that of Subtype B • There are 9 subtypes: A, B, C, D, F, G, H, J, K

Methods:

-Obtained complete genomes for each subtypes

-Did similar extraction methods used in HIV-1 sequence

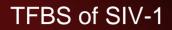
-Do to limited time, analyzed all sequences of each gene of subtype B and a random sequence of a gene per subtype

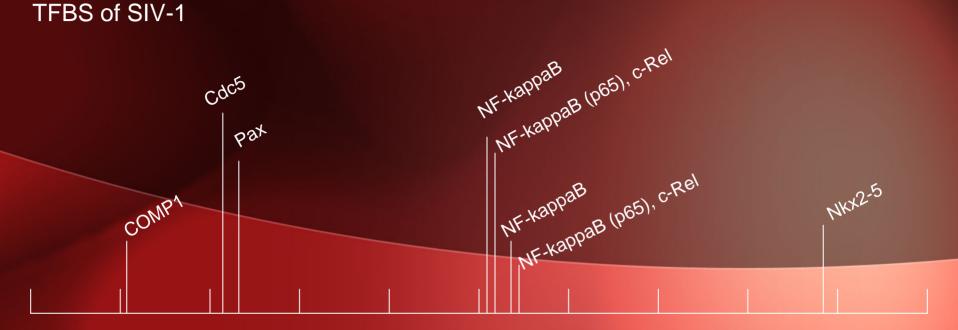
Results

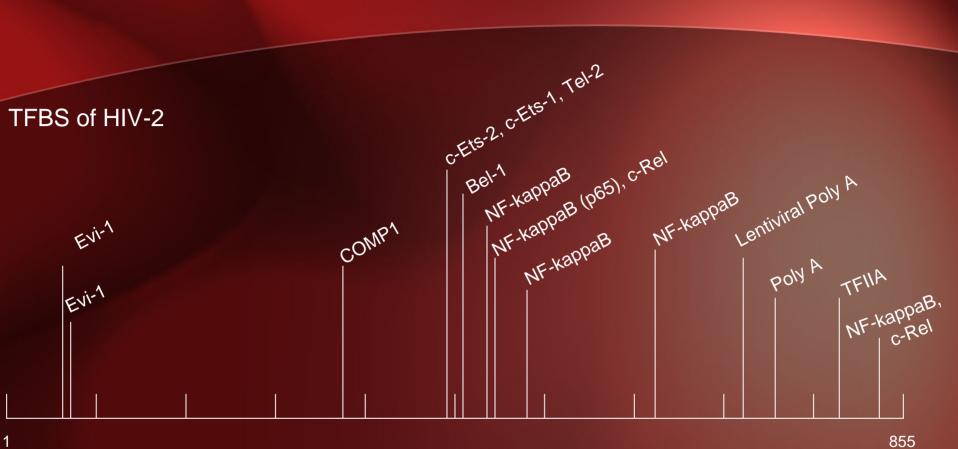
	Observed			Expected					
ENV				-					
	Fixed	Polymorph re	esiduals	Fixed	Polymorphi	G-value			
Nonsynonyr	n 439	790	1229	434.50	794.50	4.523008465	-4.48702125		
Synonymou	: 395	735	1130	399.50	730.50	-4.47435055	4.513618736		
	834	1525	2359			G-test value	0.150510788		
						p-value	0.698047708		
GAGPOL									
	Fixed	Polymorphic	020	244.24		-42.7794747	49.20393745		
Nonsynonyr		601	820	266.24	553.76	49.72230631	-45.9873991		
Synonymou			<i>1339</i>	434.76	904.24	G-test value	20.3187399		
	701	1458	2159			p-value	6.5555E-06		
NEF									
	Fixed	Polymorphic							
Nonsynonyr		128	179	55.65	123.35	-4.45066615	4.737231073		
Synonymou		87	133	41.35	91.65	4.902885968	-4.53059894		
, ,	97	215	312			G-test value	1.317703895		
						p-value	0.251004736		
REV									
	Fixed	Polymorphic				4.619723277	-4.27516555		
Nonsynonyr		66	117	46.58	70.42	-4.1594237	4.576460189		
Synonymou		-	99	39.42	59.58	G-test value	1.523188436		
	86	130	216			p-value	0.21713774		
\ <i>4</i> .5									
VIF	Fixed	Polymorphia							
Nonsynonyr		Polymorphic 134	216	76.29	139.71	5.914699402	-5.58826033		
Synonymou			210	70.23	142.29	-5.49156862	5.819345174		
Synonymou	, 72 154	282	436	77.71	142.27	G-test value	1.308431244		
	101	202	400			p-value	0.252679029		
VPR									
	Fixed	Polymorphic				-6.4331233	7.770285908		
Nonsynonyr	า 25	67	<i>92</i>	32.34	59.66	7.992447149	-6.94572213		
Synonymou	s 46	64	110	38.66	71.34	G-test value	4.767775269		
	71	131	202			p-value	0.02899728		
VPU		.							
	Fixed	Polymorphic		07.00	F 4 4 6	1.133974299	-1.10602586		
Nonsynonyr		53	92	37.88	54.12	-1.09240413	1.134875083		
Synonymou		-	61 152	25.12	35.88	G-test value	0.140838782		
	63	90	153			p-value	0.707448569		

Promoter Regions

 Although we weren't able to analyze HIV-1 with HIV-2, SIV-1, or SIV-2, we compared the Ref Seq promoter region of each species

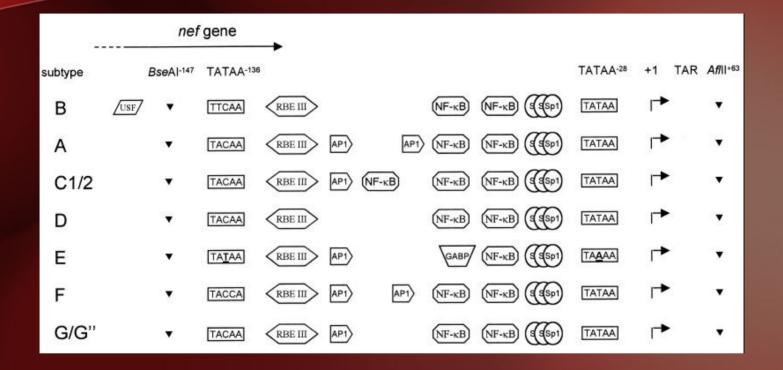

 SIV-2 did not have a promoter region defined


 We used MATCH (part of the TRANSFAC database) to predict TFBS within the LTR/ U3_R regions of each genome.



- It uses a scoring matrix generated from known TFBS to predict which TFBS are present within the promoter of the gene
- We predict that there will be many false positives

Results.....



Comparison to the known TFBS

• Prominence of NF-kappaB site (2)

•We would've liked to see the difference in Θ values across the promoter region. This would confirm and better prove TFBS (the lower Θ values= the more conserved the sequence).

•Use a sliding window of about 100 bp overlapping by 50 bp

 More accurately compare the subtypes of HIV-1

 Further develop the new test used to calculate Θ

 Calculate Θ values for different regions of the promoter region to better prove TFBS

Acknowledgements

- Takis Benos
- David Corcoran
- Shaun Mahony
- Judy Wieber and Rajan Munshi
- Dept. Comp. Bio.- University of Pittsburgh
- All BBSI participants
- NIH-NSF

References

- Kreitman M. and Hudson R. "Inferring the Evolutionary Histories of the Adh and Adh-dup Loci in Drosophila melanogaster From Patterns of Polymorphism and Divergence." <u>Genetics</u> 127 (1991): 565-582.
- McDonald, John H. and Kreitman Martin. "Adaptive protein evolution at the *Adh* locus in *Drosophila.*" <u>Nature</u> 351 (1991): 652-654.
- <u>http://uhavax.hartford.edu/bugl/hiv.htm#types</u>
- Jeeninga, Rienk E., Hoogenkamp, Maarten, Armand-Ugon, Mercedes, de Baar, Michel, Verhoef, Koen, Berkhout, Ben. "Functional Differences between the Long Terminal Repeat Transcriptional Promoters of Human Immunodeficiency Virus Type 1 Subtypes A through G". Journal of Virology 74:8 (2000): 3740-3751.
- Van Opijnen, Tim, Kamoschinski, Joost, Jeeninga, Rienk E., Berkhout, Ben. "The Human Immunodeficiency Virus Type 1 Promoter Contains a CATA Box instead of a TATA Box for Optimal Transcription and Replication." Journal of Virology 78:13 (2004): 6883-6890.
- UNAIDS (<u>http://www.unaids.org/en/HIV_data/2006GlobalReport/</u> default.asp)presented in: <u>http://hivinsite.ucsf.edu/global?</u> page=cr-01-00&post=2&cid=US#General%20HIV/AIDS