

1 Bioengineering and Bioinformatics Summer Institute, Department of Computational Biology, University of Pittsburgh, Pittsburgh, PA 15213 2 Department of Biology, University of San Francisco, San Francisco, CA 94117 3 Department of Computational Biology, University of Pittsburgh, Pittsburgh, PA 15213 4 Departments of Computational Biology and Human Genetics, University of Pittsburgh, Pittsburgh, PA 15213

Sequence Analysis of Human Immunodeficiency Virus Type 1

Stephanie Lucas^{1,2}, Panayiotis V. Benos^{1,3}, and David L. Corcoran⁴

2) Infinite Sites Neutral Model

 $Var(p_s) = [E(p_s)/n] + a_2 \cdot \theta$ S = # silent segregating sites n = # possible silent sites

$$a_2 = \sum_{x=1}^{m-1} x^{-2}$$

$$\hat{\theta} = p_s / a_1$$
$$Var(\hat{\theta}) = var(p_s) / {a_1}^2$$

3) Evolution rates compared between

-McDonald and Kreitman (1991)

The idea is that the ratio of nonsynonymous to synonymous mutations within a species (polymorphisms) should be the same as the same ratio between species if the mutations are neutral

4) Predict TFBS within the promoter regions of HIV-1, HIV-2, and SIV-1

We used MATCH (part of the TRANSFAC database) to predict TFBS within the LTR/ U3_R regions of each genome.

Graphs of predicted TFBS using

i-1	Aalpha, . Pax FOXP3 Evi-1 GATA-4 Lentiviral P GATA-4 FOXP3
TFBS of HIV-2 EN ⁻¹	
TFBS of SIV-1	CdC5 Pax
COMP1	

• Prominence of NF-kappaB site (2) •We would've liked to see the difference in Θ values across the promoter region. This would confirm and better prove TFBS (the lower Θ values= the more conserved the sequence). We would use a sliding window of about 100 bp overlapping by 50 bp.

Actual Θ : $E(p_s) = a_1 \cdot \theta$ Where... $\theta = 4N\mu$ $a_1 = \sum_{n=1}^{m-1} x^{-1}$

> -Θ is difficult to obtain and because N (population size) and μ (rate of mutation per silent site) are difficult to

Conclusion

Certain areas of the HIV-1 genome are found to have differential selective pressure, suggested by the difference in Θ .

TFBS (such as NF-kappaB) have been predicted, with relative confidence by comparison to published data.

This study, though, has more work to be done. We plan to...

- 1. More accurately compare the subtypes of HIV-1
- 2. Further develop the new test used to calculate Θ
- 3. Calculate Θ values for different regions of the promoter region to better prove TFBS

Acknowledgements

national The (http://bbsi.eeicom.com) is initiative of the NIH-NIBIB and NSF-EEC, and the BBSI @ Pitt is supported by the National Science Foundation under Grant EEC-0234002.

1) Panayiotis V. Benos and lab members: David Corcoran and Shaun Mahony

2) Department of Computational Biology, University of Pittsburgh: Judy Wieber and Rajan Munshi

References

http://uhavax.hartford.edu/bugl/hiv.htm#types

Jeeninga, Rienk E., Hoogenkamp, Maarten, Armand-Ugon, Mercedes, de Baar, Michel, Verhoef, Koen, Berkhout, Ben. "Functional Differences between the Long Terminal Repeat Transcriptional Promoters of Human Immunodeficiency Virus Type 1 Subtypes A through G". Journal of Virology 74:8 (2000): 3740-3751.

Van Opijnen, Tim, Kamoschinski, Joost, Jeeninga, Rienk E., Berkhout, Ben. "The Human Immunodeficiency Virus Type 1 Promoter Contains a CATA Box instead of a TATA Box for Optimal Transcription and Replication." Journal of Virology 78:13 (2004): 6883-6890.

Kreitman M. and Hudson R. "Inferring the Evolutionary Histories of the Adh and Adh-dup_Loci in Drosophila melanogaster From Patterns of Polymorphism and Divergence." <u>Genetics</u> 127 (1991): 565-582.

McDonald, John H. and Kreitman Martin. "Adaptive protein evolution at the Adh locus in Drosophila." Nature 351 (1991): 652-654.