
Data Visualization

NIH-NSF BBSI: Simulation and Computer Visualization of Biological Systems at Multiple Scales

5/31 - 6/2, 2005

Joel R. Stiles, MD, PhD

What is real?

Examples of some mind-bending optical illusions enabled by computer graphics.

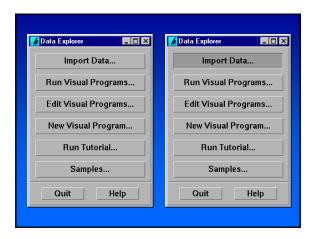
What is the goal?

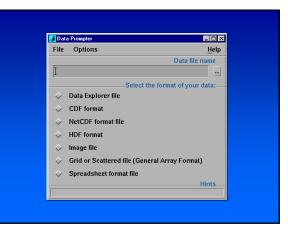
A generalized environment for manipulation and visualization of multidimensional data

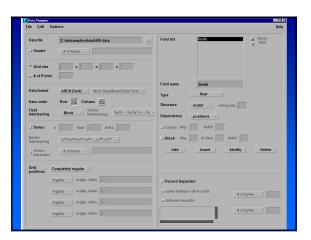
More generally -

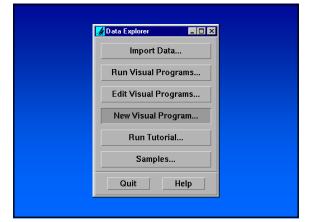
A means to map N-dimensional data onto 2-D or 3-D spaces, and visualize as a 2-D projection

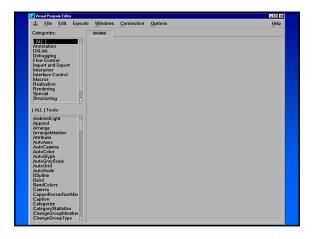
Examples of Common Datasets:

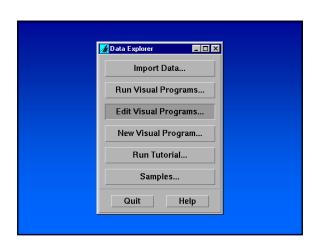

- Atmospheric data
- Oceanographic data
- Geological data
- Genomic sequences
- Protein sequences
- Protein structures
- Light & electron microscope images
- Medical imaging (CAT, MRI, PET, Ultrasound, etc.)
- Models
- Simulation data

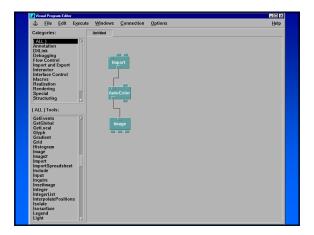

Introduction to OpenDX (www.opendx.org)


- A "Complete Visualization Environment"
- Conceptually based on underlying abstract data model
- Three visual programming support components:
 Graphical program editor visual programs
 - Core set of supplied data transformations –
 - modules

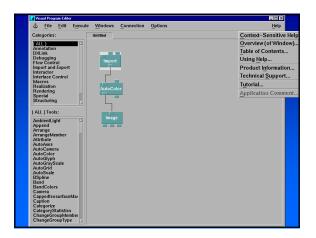

 Client-server execution model user interface
 - separate from rendering engine (DX executive)
- Advanced features:
 <u>User-defined macros</u>


 - Scripting language
 - Full API (Application Programming Interface)

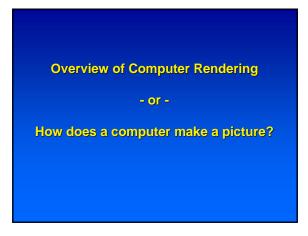


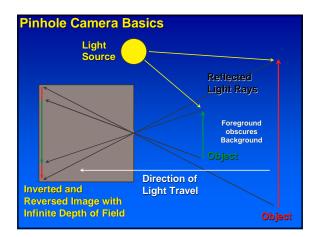




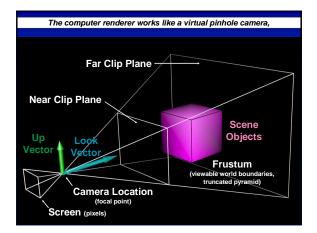


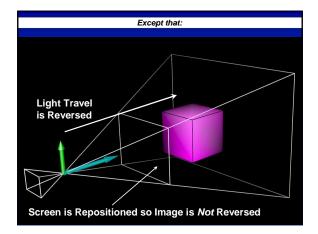
🚮 Data Explorer
Import Data
Run Visual Programs
Edit Visual Programs
New Visual Program
Run Tutorial
Samples
Quit Help

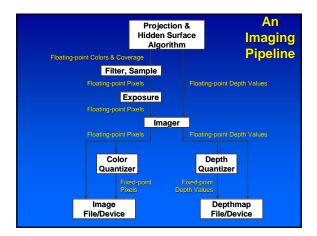


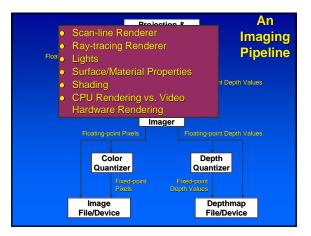


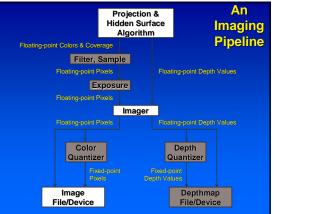
XHelp				
			Zi	
Import				
Category				
Import and	Export			
Function				
Reads an e	xternal data file.			
Syntax				
data = Im	port (name, variabl	e, format, start, end, delta);	
Inputs Name	Type	Default	Description name of file containing dats to be	
- variable format	- string or string list string	- format dependent file extension or content	read, or "!command" variable to be read "do; " "general, " "netodf; " "CDF; "	
- start end delta -	integer integer integer	first frame last frame 1	"bdt," "cm" first data frame to be imported last data frame to be imported increment between frames	
Outputs Name	Type object	Description object containing re-	quested variables	
Functional	Details			
Go Back			Close	

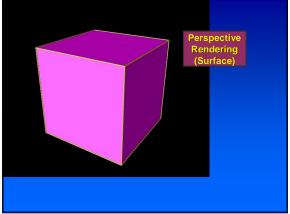

🊮 Dal	ta Explorer		_ 🗆	×
	Impo	rt Data.		
R	lun Visua	al Progr	ams	
E	dit Visua	l Progr	ams	
1	lew Visu	al Prog	ram	
	Run T	lutorial.		
	San	nples		
	Quit	H	lelp	

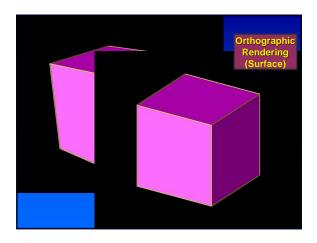

X Sample Program	election			×
C:/DX/samples	/programs/*.net			
Directories		Files		
C:/DX/samples/ C:/DX/samples/	programsi. programsi	Annotat Arrange AutoAxa AutoAxa AutoGby AutoGly Band.nd Banded Bounce Capped Caption Caption	tevisualizations.net tionGhyphs.net e.net esspecifyTicks.net jor.net di.net Colors.net Colors.net iso.net iso.net n.net rical.net Data.net et	
Selection				
C:/DX/samples	/programs <u>I</u>			
ок		Filter	Cance	2

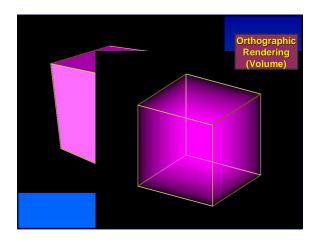


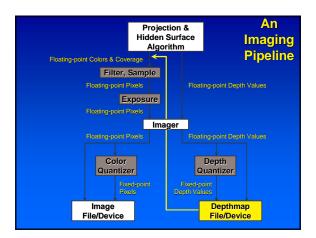


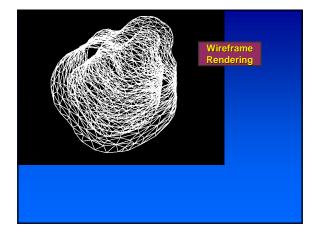


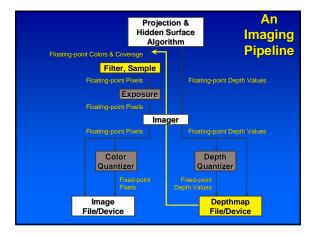


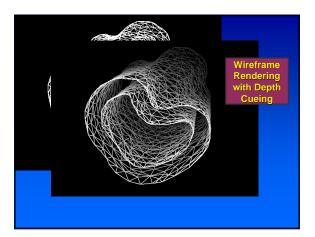


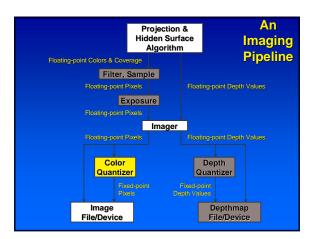


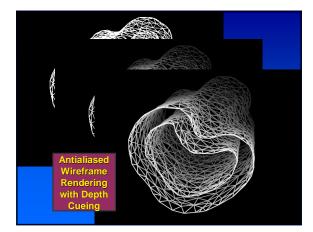


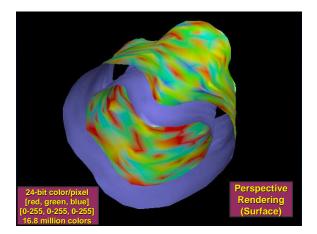


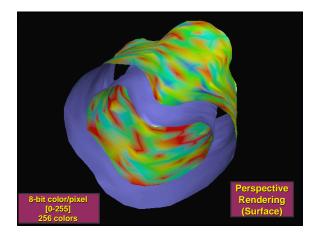


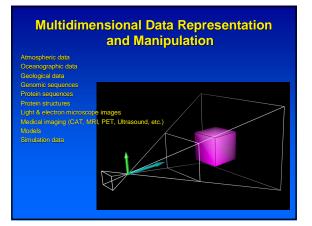


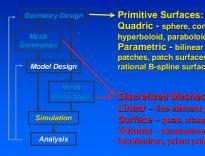


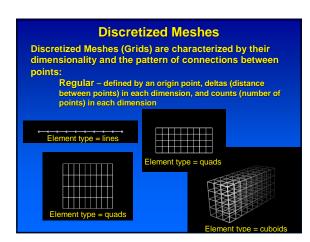


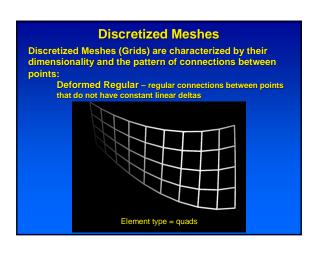




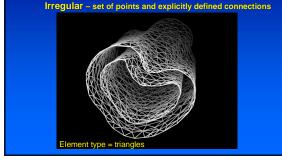


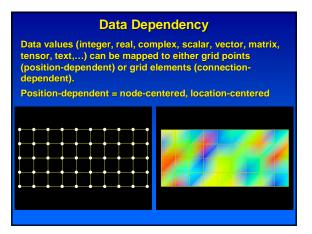






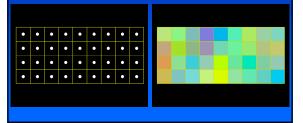
Measurement, Modeling, Simulation, **Visualization Project Flow**


Quadric - sphere, cone, cylinder, hyperboloid, paraboloid, torus Parametric - bilinear & bicubic patches, patch surfaces, non-uniform rational B-spline surfaces (NURBs)



Discretized Meshes

Discretized Meshes (Grids) are characterized by their dimensionality and the pattern of connections between points:



Data Dependency

Data values (integer, real, complex, scalar, vector, matrix, tensor, text,...) can be mapped to either grid points (position-dependent) or grid elements (connection-dependent).

Connection-dependent = cell-centered

OpenDX Data Model

An N-dimensional abstract data space from which the user takes 2-D and 3-D visual "snapshots" to create viewable images.

Uses an object-oriented, self-describing approach to defining the datasets imported, used, and manipulated by the system.

OpenDX Data Model

Generally uses 6 types of descriptive objects:

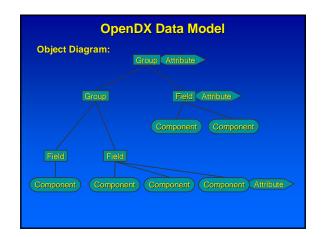
1. Attribute: names an association between an OpenDX object (array, component, field, or group) and a (simple or compound) value. A typical use for an attribute is to associate "metadata" with a data set.

2. Array: a basic data carrying structure that holds actual data. OpenDX uses one-dimensional arrays and permits the array elements to be of *any type*, so an array object can be described simply by listing the number of items it contains. Array elements are referenced by index.

OpenDX Data Model

Generally uses 6 types of descriptive objects:

3. Component: an element of a field with a specific role in data description; a component is typically associated with an array object with a specific associated name.


4. Field: a fundamental compound object in OpenDX, used to collect and encapsulate related components. All its elements must be components.

OpenDX Data Model

Generally uses 6 types of descriptive objects:

5. Group: compound object used to collect *members* that themselves may be fields and/or groups; it cannot collect components (a field is used for that purpose). A member of a group may be referenced either by name or index.

6. Special: used to describe special attributes or characteristics of objects used in the rendering process, e.g., Camera, Light, Transform, etc.

OpenDX Data Model

Attributes:

Formalize the attachment of metadata to specific parts of a data set. Examples of predefined attributes:

- "dep" specifies the component on which the given component depends, e.g., a "data" component can be dependent upon "positions".
- "ref" specifies the component to which the given component refers, e.g., a "connections" component will typically refer to the "positions" component.
- "der" specifies that a component is derived from another component, and so should be recalculated or deleted when the component it is derived from changes, e.g., the "box" component typically has a "der" attribute naming the "positions" component.
- "element type" is an attribute of the "connections" component, and names the type of interpolation primitive.
- "shade" indicates whether or not to shade the object if a "normals" component is present.

OpenDX Data Model

Array Objects:

- Items are referenced consecutively starting at zero.
- "type" attribute describes the internal numerical format to be used for the array's data. Predefined type values include *double, float, int, uint, short, ushort, byte, ubyte, and string.*
- "category" attribute specifies which of two possible floating point representations is to be used, real or complex.
- "rank" attribute refers to element order dimensionality, where rank 0 indicates a scalar, 1 a vector, 2 a matrix or rank-2 tensor, and 3 or higher a higher-order tensor.
- "shape" attribute defines the dimensionality in each of the order dimensions of the structure. Thus, for rank-0 items (soalars), there is no shape. For rank-1 structures (vectors), the shape is a single number corresponding to the number of dimensions. For rank-2 structures, shape is two numbers, and so on.

OpenDX Data Model

Field Objects consist of component arrays. Typical predefined field components:

- "positions" stores the coordinates of a set of positions in an ndimensional space.
- "connections" provides a means for explicitly relating individual collections of positions (e.g., representing lines, surfaces, etc.) and interpolating data values between positions.
- "data" stores actual data values. Only one component can be named "data" in a field, but other components can be used to store alternate data and can be switched with existing "data" at any time.
- "box", "colors", "front colors", "back colors", "normals", "opacity", "opacities", etc., provide specific information that directs the renderer's operation.

OpenDX Data Model

Group Objects consist of members. There are four specific group types:

- "Generic" group (standard).
- "Multigrid" group is a collection of separate fields, each with its own grid (with common element type) but treated as a single field, rather than as a group.
- "Composite field" group is similar to multigrid group, used primarily to segment fields to permit parts of the field/group to be processed in parallel.
- "Series" group is a generic group that stores a series value (e.g., time step) for each member.