

The Multiscale Computational Challenge									
Problem/ Method	Typical Application	Software Examples	Resolution (Scale)	Spatial Realism	Stochastic Realism	Time Step	Time Scale	Serial/ Parallel	Computer Time
Networks of Reactions/ Sets of ODEs	Metabolic or signaling pathways	VCell, ECell Gepasi XPPAUT	N/A (cell)	N/A	none	ms	ms - hrs	serial	minimal
Excitation/ Compartmental Circuit	Nerve signaling	NEURON GENESIS NEOSIM	µm - mm (cell - multicell)	low - medium	none	ms	ms - hrs	usually serial	usually low
Reaction Kinetics/ Stochastic	Gene regulation/ transcription	BioSpice StochSim XPPAUT MCell	N/A (cell)	N/A	high	ms	ms - hrs	serial	low
3-D Reaction Diffusion/ Finite Element	Flow models, calcium dynamics	VCell FIDAP Kaskade	<µm (cell)	medium- high	none	μs - ms	μs - sec	either	low - high
3-D Reaction Diffusion/ Monte Carlo	Micro- physiological processes	MCell ChemCell	nm – mm (subcell - cell)	high	high	ps - ms	μs - sec	either	low - high
Macromolecular Machinery/GNM	Collective dynamics	GNM ANM	Å - 100 nm (complexes)	high	none	N/A	<ns -="" µs=""></ns>	N/A (analytic)	minimal
Diffusion in Potential Field/Poisson- Nernst-Planck	Electrostatic interactions, ion channels	UHBD Delphi CHARMM	Å - nm (membrane proteins)	high (implicit solvent)	none	N/A	<ns -="" µs=""></ns>	parallel	low - medium
Macromolecular Motions/Brownian Dynamics (BD)	Conformational dynamics (in flow fields)	CHARMM GROMOS UHBD	Å - nm (macro- molecules)	high (implicit solvent)	high	5 - 10 fs	<ns -="" µs=""></ns>	parallel	medium - high
Molecular Structure/ Molecular Dynamics (MD)	Conformational dynamics & free energies	AMBER CHARMM GROMOS	Å (macro- molecules)	exact (explicit solvent)	exact	1 - 2 fs	<ns -="" µs=""></ns>	parallel	very high
Transition Dynamics/ Quantum-Molecular Mech. (QM/MM)	Enzyme reactions (make/break bonds)	DYNAMO (AMBER CHARMM)	Å (molecules)	exact (explicit solvent)	exact	1 - 2 fs	<ns -="" µs=""></ns>	parallel	very high
Molecular Structure/ Ab initio simulations	Solution of the Schrodinger	Gaussian98	< Å (electrons -	exact	exact	N/A	N/A	parallel	highest

- Novel C-to-T substitution in exon 8 of the δ subunit of AChR: serine to phenylalanine mutation in the second transmembrane domain (M2) that lines the ion channel
- AChR numbers not significantly reduced

PSC's Biomedical Supercomputing Initiative – An NIH Resource Center

Conclusions and Predictions Can a model of an entire active zone simultaneously reproduce the known CRR, distribution of release times and average release probability? Yes If a model can be found, what does it predict for the number of Ca²⁺ binding sites per vesicle and what constitutes a vesicle fusion event?

~30-40 binding sites, ~6 of which must be bound simultaneously to trigger fusion

 Multiple action potentials can induce short-term plastic changes. Can this be predicted using our model of vesicle fusion?

