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Timescale of Brownian Motion (25Timescale of Brownian Motion (25°°C) C) 
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Derivation of Derivation of FickFick’’ss LawsLaws
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Solution of Solution of FickFick’’ss 22ndnd LawLaw
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General Solution:General Solution:

Consider unbounded radial diffusion from a Consider unbounded radial diffusion from a 
point source:point source:
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Substituting from (1) into (2):Substituting from (1) into (2):
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Reformulate (3) using:Reformulate (3) using:
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From a table of standard integrals:From a table of standard integrals:
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Therefore (5) becomes:Therefore (5) becomes:
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And substituting from (7) back into (1):And substituting from (7) back into (1):
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Multiplying (8) by the volume of a spherical shell:Multiplying (8) by the volume of a spherical shell:
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Dividing both sides of (9) by Dividing both sides of (9) by MM::
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Use (4) again to reformulate (10) in terms of the Use (4) again to reformulate (10) in terms of the 
dimensionless parameter dimensionless parameter ss::
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From (6), the total cumulative probability of (11) From (6), the total cumulative probability of (11) 
is equal to one.  The mean radial displacement is equal to one.  The mean radial displacement 
is obtained from the expectation of is obtained from the expectation of r r ::
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After substitution for After substitution for rr and and pprr , from (4) and (11):, from (4) and (11):
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From a table of standard integrals:From a table of standard integrals:
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So the integral in (13) evaluates to So the integral in (13) evaluates to ½½, and :, and :
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The mean square radial displacement is given The mean square radial displacement is given 
by the expectation of by the expectation of r r 22 ::
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Consider linear diffusion from a plane source:Consider linear diffusion from a plane source:
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The mean linear displacement is obtained from The mean linear displacement is obtained from 
the expectation of the expectation of x x ::
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Monte Carlo Probabilities for Monte Carlo Probabilities for UnimolecularUnimolecular TransitionsTransitions

Rate Equations for Rate Equations for AChRAChR
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Assuming identical binding sites:

k+ has units of M-1.s-1 (second order)

k-, α, β have units of s-1 (first order)
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Physical Interpretation of kPhysical Interpretation of k++

LEEL k→+ +

dtELkLEdEdLd ))(()()()( +==−=−

The rate of encounters (collisions) between L and E can be estimated from
diffusion theory as the flux of L molecules across the surface of E molecules.  If
L and E are considered to be spherical molecules (radii rL and rE) in well mixed
solution, the flux can be calculated by integrating Fick’s first law for radial
diffusion over distances extending from infinity to (rL + rE), i.e., the distance of
closest approach.  The result, expressed as the number of encounters per unit
volume during an interval of time dt, is:

(isolated bimolecular reaction transition between
ligand L and effector E)

Physical Interpretation of kPhysical Interpretation of k++ (cont’d)(cont’d)
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where DL and DE are diffusion coefficients (distance squared per unit time)
and Na is Avogadro’s number.  Setting the previous rate equation equal to the
above yields the Smoluchowski equation for k+,max:

and k+ would equal k+,max if every encounter led to binding and the reaction had
no activation energy (a so-called “diffusion-limited” reaction).  Experimental
values of k+ for typical ligands and proteins are generally at least two orders of
magnitude less than k+,max (~1010 M-1⋅s-1; important exception - facilitated
diffusion) and reflect both a non-zero activation energy and the small fraction
of a protein’s surface that constitutes a binding site.  Electrostatic interactions
also influence actual values of k+, but at any scale above that of molecular
dynamics, k+ is a phenomenological scaling factor related to the velocity of
molecular motion and an apparent surface area of interaction.
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