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Beyond .a pacemaker’s entrainment limit: 
phase walk-through 

G. BARD ERMENTROUT AND JOHN RINZEL 
Mathematical Research Branch, National Institute of Arthritis, Diabetes, and Digestive and 
Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20205 

ERMENTROUT,G.BARD,ANDJOHN R~~~~~.Beyo~~dapace- 
maker’s entrainment limit: phase walk-through. Am. J. Physiol. 
246 (Regulatory Integrative Comp. Physiol. 15): RlOZ-Rl06, 
1984.~Desynchronization occurs when a pacemaker is exter- 
nally stimulated at too high a rate, beyond the entrainment 
limit. One may then observe phase walk-through: the pace- 
maker and stimulus phase dif’ference, rather than lock to a 
fixed pattern, may cycle repeatedly through all values. By 
means of a simple but nonlinear one-variable model we describe 
qualitatively the properties of entrainment, loss of entrainment, 
and phase walk-through for rhythmically stimulated pace- 
makers. We obtain an expression for the cycle length (beat 
period) of the repetitive phase walk-through. This shows, in 
contrast to the simplest treatment, that in general beat fre- 
quency is not a simple linear function of the difference between 
the pacemaker and stimulus frequencies. Our results are illus- 
trated in the context of a model experimental pacemaker, the 
rhythmically flashing firefly. We discuss how these modeling 
results apply in a much more general setting. 

desynchronization; phase-locking; biological oscillators; beat 
frequency; firefly 

NUMEROUS EXAMPLES (2, 5, 13, 15, 16) illustrate the 
ability of an external periodic stimulus to entrain a 

. biological pacemaker. One-for-one entrainment is typi- 
cally observed over a range of stimulus frequencies that 
includes the pacemaker’s intrinsic frequency. When the 
stimulus frequency is tuned beyond the pacemaker’s 
entrainment limit, desynchronization may occur. In 
many cases this loss of entrainment is only transient, 
and the pacemaker may again lock into a fixed-phase 
relationship with the stimulus but not in a one-for-one 
fashion. In other cases, e.g., for a weaker stimulus, de- 
synchronization may persist. The pacemaker and stim- 
ulus phase difference, rather than lock to a fixed simple 
pattern, may cycle repeatedly through all values. This 
has been called phase walk-through (5). We will focus on 
this latter phendmenon and present, a simple but nonlin- 
ear, one-variable model that qualitatively describes the 
properties of entrainment, loss of entrainment, and 
phase walk-through for rhythmically stimulated pace- 
makers. Moreover we obtain a quantitative expression 
R102 

(Eq. 4), for the cycle length (beat period) of the repetitive 
phase walk-through. We illustrate these results in the 
context of a model experimental pacemaker, the rhyth- 
mically flashing firefly (2, 3, 5). The modeling results we 
present are robust. They apply in a much more general 
setting for the case of a weak periodic stimulus acting on 
a strongly attracting oscillator. Since this treatment does 
not include the special case of a weakly nonlinear oscil- 
lator that is weakly driven, we do not find the desyn- 
chronization phenomenon of “phase-trapping” (see 7). 

FIREFLYPACEMAKER 

Certain Southeast Asian fireflies are known to flash 
rhythmically at intervals ranging from 400 to 5,000 ms 
in different species but typically at about I-s intervals. 
These insects have the ability to synchronize their flash- 
ing with either an external source (zeitgeber) or with 
other fireflies of the Same species. Current evidence 
suggests that the control of the rhythmic flashing is via 
a cellular pacemaker of unknown origin [see (2, 3, 5) for 
reviews]. The flashing, synchrony, and associated phe- 
nomena make the firefly a good model for other biological 
rhythms. Hanson (5) describes how the properties of the 
firefly oscillator are very similar to circadian pacemakers. 
Among the several known qualitatively different firefly 
pacemakers, we focus on Pteroptyx malaccae, a common 
species from Malaysia. Certain of the data from P. ma- 
laccae suggest that it falls into the weak forcing case. 

Let T0 denote the natural period of the free-running 
firefly oscillator and T denote the period of the stimulus. 
For P. malaccae, TO = 920 ms, If T is sufficiently close 
to To, then the animal will entrain to the external forcing 
and flash with a period T at a distinct phase + of the 
stimulus cycle. In general, 4 will be a function of T. If T 
is too different from Tr,, the animal cannot precisely 
entrain and the phenomenon of phase walk-through 
occurs; i.e., $ traverses all phases rather than remaining 
at a fixed phase. This phenomenon is depicted in Fig. 1. 
When T = 770 ms the animal is able to entrain, but at 
the slightly higher frequency, T = 750 ms, entrainment 
no longer occurs. Rather the animal flashes at many 
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BEYOND A PACEMAKER’S ENTRAINMENT LIMIT R103 

different phases in the cycle, as illustrated by the lower 
curve. The top graph is the interval between successive 
flashes. During entrainment this interval is exactly T, 
the period of the zeitgeber. But during phase walk- 
through there is a long time scale, apparently periodic, 
modulat*ion of the flashing interval with peak-to-peak 
times of the order of 10 s. Phase walk-through is a 
property (although not exclusively) of weakly stimulated 
oscillators. Additional evidence that P. malaccae is ex- 
periencing a weak stimulus is its phase resetting curve 
[see (Fj), Fig. 6C],’ h’ h w IC is of type 1 rather than type 0. 

To reiterate, our goal is to give a simple, qualitative, 
mathematical description of phase walk-through, as well 
as to make some rigorous quantitative estimates. We 
show that the “beat periods,” the long peak-to-peak times 
between maximal firing intervals during phase walk- 
through, are not simple linear functions of the difference 
between the oscillator and stimulus frequencies as sug- 
gested by Pavlidis (12). Rather they are nonlinear func- 
tions of the difference between the frequency of the 
zeitgeber and the limiting entrainment frequency. We 
f’ind that our simple model also predicts the curvature 
seen in the phase plots of Fig. 1, as well as the “peaked- 
ness” of the firing interval plots. As stated previously 
and shown in the APPENDICES, the model is an example 
of a canonical description for weak forcing and phase 
walk-through of a much more general oscillator. 

PHASEMODEL 

Since the firefly oscillator is stable, it is not unreason- 
able to suppose the the underlying physiological variables 
lie on an attracting limit cycle. Since such a cycle is 
equivalent to a circle, each point in the cycle can be 
described by a phase 0 5 0 5 2~. That is, if a zero phase 
is chosen, i.e., the point at which the signal to flash is 
sent from the pacemaker, then all the states of the 
oscillator can be described by the phase, the time since 
the last signal was sent. The simplest model for this 
cycle is then 

+Q5J I 1 I I L 
0 25 50 75 100 125 

Time (WC) 

(1) 

Here, 8 goes from 0 to 2n in 5Y0 ms. The effect of the 
periodic stimulus must now be described. For conven- 
ience we suppose the stimulus acts continuously (non- 
constant) on the oscillator rather than impulsively. The 
external signal can lengthen or shorten the pacemaker’s 
cycle duration by altering the rate de/dt at which the 
oscillator pursues its trajectory. A point on the intrinsic 
cycle moves with an angular velocity 00, w0 = 27r/To, 
whereas we suppose the zeitgeber travels at a velocity O, 
w = 24T. The following assumptions are made: 1) if the 
zeitgeber is ahead of the firefly then de/dT increases and 
thus the pacemaker fires earlier; 2) if the zeitgeber is 
behind the firefly then de/dt decreases and the insect 
will fire later; and 3) the amount of increase or decrease 
of dH/dt is a function (e.g., linear) of 4 with no adjustment 
when 4 is a multiple of 27t. Thus if 0 c 4 c r, then the 
insect shortens the cycle (increases the flash frequency) 
and if -r c $ < 0 or r c + < 2x, the insect lengthens 
its cycle (decreases the frequency). This is illustrated in 
Fig. 2 for two cases, a direct linear dependence, solid, 
and a smoother dependence, qualitatively similar to 
sin($). 

With the phase difference given by 4 = wt - 8, a simple 
model satisfying the above hypotheses is 

de -- - 
dt 

2x/T, + p sin(ot - 0) (2) 

where p measures the relative influence of the zeitgeber. 
Equation 2 shows that if 0 < @ < T, then the pacemaker 
speeds up, whereas for -n < 4 < 0 the pacemaker slows 
down. This model, a particular example of a general one- 
variable description for a weakly forced oscillator (see 
APPENDIX A), can be solved exactly. 

ENTRAINMENTANDPHASEWALK-THROUGH 

First note that entrainment implies C#J remains fixed at 
some particular value for all times; i.e., the firefly always 
flashes at the same phase relative to the zeitgeber. To 
solve Eq. 2 we use de/dt = o - (d$/dQ, so Eq. 2 becomes 

A 

RDVANCE 

FIG. 1. Flash response of’ firefly Pteroptyx malaccae for periodic 
stimulus with period near entrainment limit. Int,ervals of pacer (upper 

trncc4 and firefly (middLe trace), and phase between them (Louxr trace), 

. -’ 

DELAY 
are plotted as functions of time. At beginning of graph, pacer period = 
770 ms and mean phase = 24 -C 5 (SE) ms; switching pacer period to FIG 2. Two examples of assumed dependence of phase adjustment 
7.50 ms results in phase walk-through. [From Buck et al. (3).] on phase difference C,!I between stimuius and pacemaker. 
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R104 G. B. ERMENTROUT AND J+ RINZEL 

d+ 27T -- - 
dt TOT 

(T 0 - T) - P sin(+) (3) 

In Fig. 3, dg/dt is illustrated for To - T small and for 
To - T large. If To - T is not too large (Fig. 3A), 4 comes 
to rest at a fixed stable &. For To - T too large (Fig. 3B) 
d@/dt is always positive and 4 never comes to rest but 
rather traverses the entire range of phases. Figure 4 
depicts this phase walk-through behavior from the nu- 
merical solution,to Eq. 2. Note the remarkable similarity 
to the firefly data of Fig. 1. 

Figure 3B can be used to understand qualitatively and 
quantitatively Figs. 1 and 4. In Fig. 3B there are two 
distinct regions, shaded and unshaded. In the shaded 
region $ = T/Z and d+/dt is very small. Thus + spends 
most of its time nearly constant, near 4 = r/Z. By 
substituting this into Eq. 2, one sees that de/dt = o. + p 
for most of the time. This shows that the average fre- 
quency is much higher than that of the free-running 
pacemaker, The decreased average firing interval corre- 
sponds to Hanson’s observation (5) that the average 
interval during walk-through is 814 ms, well below the 
free-running period 920 ms, Equation 2 and Fig. 3B also 
show that the minimum firing interval is approximately 

I 
-rr 

5 L 

0.5 

0 
L + + 
‘k \ + + I 

1. I 
B8 . t 

+ + 

%t + 
-u*cl -- 

500 750 1000 

TIME 
FIG. 4. Phase walk-through exhibited by numerical solution of Ey. 

2 for T < T,. Intervals between successive firings (i.e., when B = 0 
modulo 2~) and the phases (module T) at which firing occurs are 
plotted vs. time: upper and lower curves, respectively. Parameter values: 
0 = 0.17, T = 2~11.2, Tr, = 2n. 

Z~/(O~~ + p) and th e peak interval is 24(wo - p). Hanson 
further comments on the curvature of the phase plots 
during walk-through. Although curvature is evident in 
Fig. 1, it is much clearer in Fig. 4, the computer solution. 
This curvature is again related to Fig. 3B. The portion 
with a gradual slope in Fig. 4 corresponds to the shaded 
region in Fig. 3B where 4 changes very slowly. The 
steeper portion of the phase plots corresponds to the 
unshaded region where 6 changes more rapidly. 

Equation 2 allows one to make some quantitative pre- 
dictions about the most evident properties of walk- 
through: the periodic variation (beating) of the firing 
intervals. In APPENDIX B the following formula is derived 
for calculating the beat period Theat during walk-through 

T 
C(T,,To) 

beat = 

(4) 

dt where C is a complicated function of Tp, the minimum 
period of entrainment, and To is the pacemaker’s intrin- 
sic period. Equation 4 may be applied to predict quanti- 
tatively the separation of firing interval peaks during 
walk-through once a few constants are known. In partic- 
ular, if Tp can be found, then C can be computed from a 
single walk-through experiment. Once C and Tc are 
known, the dependence of Tbeat on T is given by Eq. 4. If 
we take Tp = 770 ms for the firefly data, then, calculating 
C from Eq. B5, we obtain 

T beat = 1.35/&/T - 1 (seconds) 

For a stimulus with period T = 750 ms we get Tbeat h 8.3 
FIG. 3. Dynamics for phase difference, based on one-variable phase 

model. A: entrainment occurs for stimulus period T near intrinsic 
s, which compares quite favorably with Fig. 1. We note 

pacemaker period T,,; constant stable phase difference (eO) is main- that the simplest theory of beating between noninteract- 
tained. R: for T just beyond entrainment limit, phase walk-through ing oscillators (12) yields the estimate Tbeat = (T - To)/ 
occurs; 4 continually increases, although slowly for 4 in shaded interval. TOT, which for these data equals 4.1 s. To better compare 
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BEYOND A PACEMAKER’S ENTRAINMENT LIMIT R105 

our theory with experiment, the beat frequency as a 
function of the stimulus period should be measured. Such 
experiments have not yet been done. 

DISCUSSION 

With a simple one-variable model we have described 
various properties of entrainment and loss of entrain- 
ment (desynchronization) for periodically stimulated 
pacemakers. The model predicts phase walk-through 
when the stimulus frequency is tuned just beyond the 
oscillator’s entrainment limit (cf. Figs. 1 and 4). A for- 
mula has been obtained (Eq. 4) for the beat period of the 
walk-through pattern. The analysis also shows that most 
of the time during walk-through the instantaneous fre- 
quency exceeds the oscillator’s intrinsic frequency so the 
firing interval plots exhibit localized peaks (cf. Figs. 1 
and 4). We emphasize that a one-variable treatment and 
these properties (and formulas analogous to Eq. 4) char- 
acterize all stable oscillators when (weakly) driven be- 
yond their entrainment limits (see APPENDLCES). Fur- 
thermore, although the discussion and Figs. l-4 concern 
phase walk-through when the stimulus frequency is too 
high, similar results obtain if the pacemaker is forced at 
low frequencies. Qualitatively the only difference will be 
that the firing interval curves will be flipped over (the 
troughs will be sharp and the peaks will be flat), and so 
the average firing interval will be much greater than the 
free-running interval. All other calculations remain ap- 
proximately the same. 

We have studied behavior near the entrainment limit 
by considering Eq. 3 for 4. In the case of phase walk- 
through, 4 (modulo 2n), by definition, is periodic of 
period Z’beet. Nevertheless this does not imply that 8 
(modulo 2~) has period equal to Theat (e.g., in Fig. 4, 8 
has period 3 7’&. Indeed e could be aperiodic. To 
characterize the e-dynamics an alternate viewpoint and 
analysis of Eq. 3 are useful [e.g., see (6) for references 
and exposition]. Let 8, be the pacemaker phase at the 
beginning of the nth stimulus cycle. The relationship 
&I + en+1 is called the Poincari! map, and it defines a 
mapping of the circle (0,27r) onto itself. A classic way to 
describe the behavior of such circle mappings is in terms 
of the rotation number p defined by 

en p = lim G 
n-*m rl 

(5) 

It equals the average number of pacemaker cycles per 
stimulus cycle. Note that when y is rational the response 
is periodic, but when p is irrational aperiodic behavior 
occurs. In the case T > To the map has a stable fixed 
point that corresponds to one-for-one entrainment with 
P = 1. Beyond the entrainment limit, T < T[,, we have 
P =l - Tl Theat, which takes on rational and irrational 
values as T is tuned. From our approximation for T 
when T,, - T is small, we find p G 1 - const Tp - J-F 
Such square-root dependence near criticality is typical; 
another example of this is described by Hoppensteadt 
and Keener (6). 

On closer examination of the interval pl ots in Fig. 1, 
we observe that the firin g interval during phase walk- 

through traverses well below the pacemaker’s intrinsic 
period but barely exceeds this period at the peaks. This 
feature cannot be explained by a simple sinusoidal phase 
function as in Fig. 3 and Eq. 2. Rather a more general 
phase function is required. Let N(U) be such a function 
with H(0) =OandH’(O)>O.Let~=maxH>Oandh 
= min H < 0; for H = sin(u), k= 1, h = -1. Then it ii 
clear that the maximum firing interval during phase 
walk-through is I,,, = 2?r/(0~~ + @h) and the minimum 
is Imin = 2x/( wg + ,di). F rom Hanson’s observation that 
I,,, approximately equals the intrinsic period, we con- 
clude that h must be very nearly zero. Also, 1min is much 
less than Ti so that /Gs far from zero. This result implies 
that the pacemaker will have much more trouble entrain- 
ing to stimuli with longer periods than its intrinsic 
period. Thus, based on the data from the high-frequency 
phase walk-through, we can make predictions about the 
low-frequency response, 

There are other oscillatory systems that occur in bi- 
ology and for which walk-through is quite apparent. A 
well-known example occurs in free-running circadian 
experiments (see 15). In these protocols the activity 
rhythm stays with the temperature rhythm for a long 
time and then breaks away. A lesser-known and poorly 
understood example of phase walk-through occurs in 
models of the small intestine (see 10). Rather than one 
oscillator “breaking away” from another, a whole group 
separates, leading to the so-called frequency plateaus. 

The firefly model has an advantage over these other 
oscillators in that the period of the oscillation is about 1 
s. Thus many different experiments can be done in a 
short period of time. Systematic data is unavailable for 
the beat frequency as a function of the period of the 
zeitgeber in the firefly model. Other oscillators should 
qualitatively behave the same way after entrainment is 
lost, and Eq. 4 should hold for these systems also, 

Phase-locking and walk-through have been considered 
in quite different contexts in a more mathematical set- 
ting by a number of authors. For example, Kuramoto 
and Yamada (8), Aizawa (I), and Fujii and Sawada (4) 
studied the behavior of a simple model similar to Eq. 3 
in the context of chemical wave formation. Neu (11) 
studied the coupling of two oscillators with emphasis on 
phase-locking. He mentioned phase walk-through as a 
consequence of losing the synchronization of the two 
cycles. In a different context, Winfree (16, chapt. 3, sect, 
C) examined an equation similar to Eq. 3 and derives a 
formula for the “period” of the walk-through. Finally, 
Rand and Holmes (14) considered a similar phenomenon, 
but the attractivity of the oscillators was weak, so that 
their analysis was necessarily more complex and can also 
lead to phase-trapping. 

APPENDIX A 

Let X(t) be a vector describing the relevant physiological compo- 
nents of the pacemaker. We suppose X satisfies the system of differ- 
ential equations 

dX 
- = F(X) 
dt 

W) 
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R106 G. B. ERMENTROUT AND J. RINZEL 

For example, the van der Pol oscillator has formed the basis of some 
other pacemaker models (e.g., see 4). Suppose X0( t ) is a stable periodic 
solution to (A I ) with period To, i.e. 

X,, represents the intrinsic oscillation of the pacemaker with frequency 
WO = %/To. Let G(X, wt) be a vector of periodic stimuli, possibly X 
dependent, such that G(X, wt + 2x) = G(X, wt). Thus the period of the 
stimulus is T = 2+. Let a be a small nonnegative number and suppose 
that 

where A is order 1; i.e., the difference in the frequencies of the oscillator 
and the stimulus is small. Furthermore suppose the effect of the 
rhythmic stimulation on the pacemaker is weak [relative to the attrac- 
tiveness of X,,(t)]. Then the equation for the periodically forced oscil- 
lator is 

dX 
- = F(X) + aG [X, (oO - aA)t] 
dt 

(A3) 

In a classic paper, Levinson (9) proved that Eq. A3 is equivalent to 

de 
- = wg + QH [(wo - aA)t - 01 + a2 terms 
dt 

(A4) 

where (1 is the phase along the cycle and H(u) is a %-period function 
of the phase difference (4), qualitatively similar to sin(u). Intuitively, 
the theorem says, when there is no coupling, the forcing function and 
the oscillator cycle independently+ They can be described individually 
by their respective phases, which lie on the circle (0, 2~). The two 
circles form a surface, the torus, each point (&, 0,) of which corresponds 
to a state of the pair of cycles. The first part of the theorem says that 
because the pacemaker is stable, this surface persists when a is small 
and nonzero. Since the difference in frequencies between the oscillator 
and the forcing function is small, the second part of the theorem says 
that you can average over the forcing period. This reduces the system 
to a single equation for #. Now with $ given by 

4 = (wo - aA)t - tl = wt - 8 

we find, from Q. A4 that $ satisfies 

d# - = a[A 
dt 

- H(6)] + a” terms (A5) 

Since a is small, the a:’ terms are neglected and Eq. A5 is thus a 
generalized version of Eq. 3. Hence the qualitative results on the phase 
model can be expected to hold for a much more general set of equations 
(e.g., Eq. A3). 
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We consider 

d4 
dt=W-Wo - B sin(#) 
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opposite case is analyzed similarly). As long as 

w - 00 < B U32) 
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becomes an equality 

up - wo = P 

From this we see that experimental knowledge of Ok and w. thus 
determines fi in this model. Now suppose o exceeds the entrainment 
limit, 0 - wo > 8, Then d4/dt is always positive, and we integrate Eq. 
BI to obtain 

s d du 
= t 

w - wo - j3 sin(u) 
(B3) 

The beat period T heat is time taken by # to proceed from 0 to 2~ (i.e., 
a total walk-through of phase). Thus we have 

s 

2* 

T 
d4 27r 

beat = = (B4) 
0 - wo - P sin($) J (0 - uoy - (oe - ooj* 

where we have expressed 0 in terms of we and 00. For c3 near we, Eq. B4 
simplifies to 

or, in terms of periods 

T beat G 

= 

U35) 
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