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We present a detailed comparison of computational efficiency and precision for several free energy
difference (AF) methods. The analysis includes both equilibrium and nonequilibrium approaches,
and distinguishes between unidirectional and bidirectional methodologies. We are primarily
interested in comparing two recently proposed approaches, adaptive integration, and
single-ensemble path sampling to more established methodologies. As test cases, we study relative
solvation free energies of large changes to the size or charge of a Lennard-Jones particle in explicit
water. The results show that, for the systems used in this study, both adaptive integration and path
sampling offer unique advantages over the more traditional approaches. Specifically, adaptive
integration is found to provide very precise long-simulation AF estimates as compared to other
methods used in this report, while also offering rapid estimation of AF. The results demonstrate that
the adaptive integration approach is the best overall method for the systems studied here. The
single-ensemble path sampling approach is found to be superior to ordinary Jarzynski averaging for
the unidirectional, “fast-growth” nonequilibrium case. Closer examination of the path sampling
approach on a two-dimensional system suggests it may be the overall method of choice when
conformational sampling barriers are high. However, it appears that the free energy landscapes for
the systems used in this study have rather modest configurational sampling barriers. © 2006

American Institute of Physics. [DOI: 10.1063/1.2378907]

I. INTRODUCTION

Free energy difference (AF) calculations are useful for a
wide variety of applications, including drug design,l’2 solu-
bility of small molecules,™ and protein/ligand binding
affinities.”™ Due to the high computational cost of AF cal-
culations, it is of interest to carefully compare the efficien-
cies of the various approaches.

We are particularly interested in assessing recently pro-
posed methods™'® in comparison to established techniques.
Thus, the purpose of this study is to provide a careful com-
parison of the efficiency and precision of several AF meth-
ods. Efficiency studies for other free energy methods include
those in Refs. 11-14. We seek to answer two important ques-
tions. (i) Given a fixed amount of computational time (10°
dynamics steps, in this study), which method estimates the
correct value of AF with the greatest precision? (ii) Which
AF approach can obtain a “reasonable” estimate of AF in the
least amount of computational time?

Free energy difference methods can be classified as ei-
ther equilibrium or nonequilibrium. Equilibrium approaches
include multistage free energy perturbation,ls_17 thermody-
namic integration,1 1% Bennett analysis,M’ZO_22 and weighted
histogram analysis.23 We term these methods “equilibrium”
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since all these approaches rely on fully sampled equilibrium
simulations performed at each stage of the free energy cal-
culation. Importantly, if equilibrium is not attained at each
stage, then results can be biased. A host of nonequilibrium
methods has recently been applied to various molecular sys-
tems, largely due to Jarzynski’s remarkable equality.24’25
Nonequilibrium methods have the potential to provide very
rapid estimates of AF, but can also suffer from significant
bias, 1126732

In this report we present results using both equilibrium
and nonequilibrium approaches as well as unidirectional and
bidirectional methodologies. Specifically, we compare (i)
adaptive integration,’ (i) thermodynamic integration,'® (iii)
single-ensemble path sampling of nonequilibrium work val-
ues using Jarzynski’s unidirectional averaging,m (iv) single-
ensemble path sampling using Bennett’s bidirectional for-
malism, (v) Jarzynski averaging of nonequilibrium work
values,”*** (vi) Bennett analysis of nonequilibrium work
values,” (vii) equilibrium Bennett analysis,” and (viii) mul-
tistage free energy perturbation.ls’16 We also compare the
free energy profiles, which determine the potential of mean
force for adaptive integration and thermodynamic integra-
tion.

We study two test calculations: the growing and the
charging of a Lennard-Jones particle in explicit water.
Growth and charging can be considered as the elementary
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steps in any “alchemical” free energy computation, suggest-
ing the relevance of our results to the estimation of relative
binding affinities.

Generally, one is interested in the free energy difference
(AF=F,—F,) between two states or systems of interest de-
noted by potential energy functions Uy(x) and U,(x), where
x is the full set of configurational coordinates. AF can be
written in terms of the partition functions for each state,

Z[UI(X)]>
Z[Uyx)]/)°

where kg is the Boltzmann constant, 7 is the system tempera-
ture, and Z[U(x)]=/fdx exp[-U(x)/kgzT]. Because the over-
lap between U, and U; may be poor, a “path” connecting U,
and U, is typically created. In our notation, the path will be
parametrized using the variable A, with OsA<1.

AF:—kBT1n< (1)

Il. EQUILIBRIUM FREE ENERGY CALCULATION

Equilibrium free energy methodologies share the com-
mon strategy of generating equilibrium ensembles of con-
figurations at multiple values of the scaling parameter \. In
the current study we investigate thermodynamic
integration,18 adaptive integration,9 multistage free energy
pelrtulrbation,15 and multistage equilibrium  Bennett
analysis.20 We performed separate equilibrium simulations at
successive values of A\, and then estimated AF using free
energy perturbation, Bennett averaging, and thermodynamic
integration on the resulting ensemble of configurations (de-
tailed in Sec. IV).

A. Thermodynamic integration

Thermodynamic integration (TI) is probably the most
common fully equilibrium AF approach. In TI, equilibrium
simulations are performed at multiple values of \. Then, AF
is found by approximating the integral18

|
AF = f d)\<m> , ()
A=0 2NN

where the functional form for U, (x) depends on the scaling
methodology and will be discussed in detail in Sec. IV. The
notation (---), indicates an ensemble average at a particular
value of \. In addition to the possibility of inadequate equi-
librium sampling at each \ value, error arises in TI from the
fact that only a finite number of N values can be simulated,
and thus the integral must be approximated by a sum.'* Ther-
modynamic integration can provide very accurate AF calcu-
lations, but can also be computationally expensive due to the
equilibrium sampling required at each \ value. ™

B. Adaptive integration

The adaptive integration method (AIM), detailed in Ref.
9, seeks to estimate the same integral as that of TI, namely,
Eq. (2) (see also discussions in Refs. 38-42). However, in
addition to fixed-\ equilibrium sampling, the AIM approach
uses a Metropolis Monte Carlo procedure to generate equi-
librium ensembles for the set of N values. The N\ sampling is
done by attempting Monte Carlo moves that change the
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value of \ during the simulation. The probability of accept-
ing a change from the old value A, to a new value \,, is

Pacc()\o - )\l’l)

= min[ 1.0, e—,B(Ux”(X)—UAo(X))e+,8(51:"(>\,,)—51:"0\0))]’ 3)

where B=1/ksT and SF(\,) is the current running free en-
ergy estimate obtained by numerically approximating the in-
tegral

3 N 5U>\(X)>
5F )\l' = d)\ . 4
() - <—o77\ )\ (4)

Between attempted Monte Carlo moves in A, any canonical
sampling scheme (e.g., molecular dynamics, Langevin dy-
namics, and Monte Carlo) can be used to propagate the sys-
tem at fixed N\. In this report, Langevin dynamics is used to
sample configurations, and Monte Carlo moves in \ are at-
tempted after every time step.

It is important to note that, due to the use of the running

estimate SF in Eq. (3), the AIM method satisfies detailed
balance only asymptotically. In other words, once the AF

estimate fully converges, the value of SF is correct, and de-
tailed balance is satisfied.”**

AIM is related to parallel tempering simulation,”™ and
has the associated advantage: equilibrium sampling of con-
formational space at one A value can assist sampling at other
\ values due to the frequent N moves. This is reminiscent of
“N dynamics” simulation,”’40 but contrasts with TI where
only a single starting configuration is passed between A val-
ues.

An additional advantage of AIM over the other methods
detailed in this report is that there is a simple, built-in, reli-
able, convergence criterion. Specifically, one can keep track
of the population (number of simulation snapshots) at each
value of N. When the estimate for AF has converged, the
population will be approximately uniform across all values
of . If the population is not approximately uniform, then the
simulation should be continued.

38

C. Free energy perturbation

In the free energy perturbation approach, one performs
independent equilibrium simulations at each \ value (like
TI), then uses exponential averaging to determine the free
energy difference between neighboring A values'>—these
differences are then summed to obtain the total free energy
difference. AF can be approximated for a path containing n
\-values (including A=0 and \=1) using the “forward” es-
timate [free energy perturbation—forward (FEPF)],

n-1

AF =— kBTE ln(e'B(UM+1(X")_U>‘f(X") >)‘i’ (5)
i=0

or the “reverse” estimate [free energy perturbation—reverse
(FEPR)],

Downloaded 29 Nov 2006 to 130.49.212.88. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



184114-3 Free energy methods for molecular systems
n—1
AF =+ kBTE 1n<€_ﬁ(U}‘z(x”l)_U}\m(x”l) >)"+1‘ (6)
i=0

A primary limitation of free energy perturbation is that the
spacing between \ values must be small enough so that there
is sufficient “overlap” between the configurations spaces cor-
responding to A; or N;,;. That is, the ensemble being gener-
ated (i for forward or i+1 for reverse) must contain a suffi-
cient number of conformations in all important parts of the
other configuration space (i+1 or i, respectively).11

D. Equilibrium Bennett estimation

It is also possible to use Bennett’s method to combine
the information normally used for forward and reverse free
energy perturbations. In this approach, one computes the free
energy difference between successive \ values JF; according
to

<[1 + eﬂ(U}‘M(X")_U)‘i(x")_éF")]_l>)\i
= (14 PO )T S Yy ™)

Then the sum of these OF; is the total free energy
difference,20
n—1

AF =2, 6F;. (8)
i=0

Studies have shown that using the Bennett method to evalu-

ate free energy data is the most efficient manner to utilize
—_ 14,2122

two equilibrium ensembles.

lll. NONEQUILIBRIUM FREE ENERGY ESTIMATION

In nonequilibrium free energy approaches, the system is
forced to switch to subsequent \ values, whether or not equi-
librium has been reached at the current \ value. In this way,
nonequilibrium paths are generated that connect U, and U;.
In the current study we wuse unidirectional Jarzynski
averaging24 and Dbidirectional Bennett averaging of
Jarzynski-style work values,” as well as unidirectional'® and
bidirectional averaging of path sampled work values.

A. Jarzynski averaging

For the Jarzynski method,24 one considers nonequilib-
rium paths that alternate between increments in A and “tra-
ditional” dynamics (e.g., Monte Carlo or molecular dynam-
ics) in x at fixed A values. Thus, a path with n A steps is
given by

Z,={(\y=0,%0),(N1,X0),(\1.X7), (A2, X1),
()\Z’XZ)’ e 9()\n—l’xn—l)7()\n = 17Xn—1)}7 (9)

where it should be noted that increments (steps) from \; to
\;;1 are performed at a fixed conformation x;, and the initial
X, is drawn from the canonical U, distribution. For simplic-
ity, Eq. (9) shows only a single dynamics step performed at
each fixed A; from x,_; to x;; however, multiple steps may be
implemented, as below (Sec. V). A forward work value is
thus given by
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n—1

WAZ,) = 2 [Uy,(x) = Uy (x)]. (10)
i=0

By generating multiple paths (and thus work values) it is
possible to estimate AF via Jarzynski’s equality,24

AF = — kgT In {e7PVr),, (11)

where the (---), represents an average over forward work
values W, generated by starting the system at U, and ending
at U;. A similar expression can be written for the situation
when work values are generated by switching from U, to U,,.
This approach is “unidirectional” since only work values
from either forward or reverse data are used.

Perhaps the most remarkable aspect of Eq. (11) is that it
is valid for arbitrary switching speed. However, in practice,
the AF estimates are very sensitive to the distribution of
work values, which in turn is largely dependent on the
switching speed. Consistent with results in this report (Sec.
V), other studies'>* have suggested that the optimal effi-
ciency for unidirectional Jarzynski averaging is when the
switching speed is slow enough that oy~ 1kpT.

B. Bennett averaging of Jarzynski work values

Due to the bias introduced in using unidirectional
Jarzynski averaging, it is useful to consider a method where
both forward and reverse work values are utilized. It has
been shown that the most efficient use of bidirectional data is
via Bennett’s method,zs’43

E [l + €‘B<77+Wf_AF)]_] = 2 [1 + eﬁ(—mWV+AF)]—l’ (12)
Ny N,

where 7=kzT In(N,/N,) allows for differing number of for-
ward (N,) and reverse (N,) work values. Equation (12) must
be solved iteratively since AF appears in the sum on both
sides of the equation.

We note that it is also possible to extend Bennett’s
method to nonequilibrium free energy computation by view-
ing the approach as an optimized overlap sampling, which
also provides a prescription for the form of U,.

C. Single-ensemble path sampling

Single-ensemble path sampling (SEPS) is a nonequilib-
rium approach that seeks to generate “important” paths more
frequently.lo"lsf50 The method uses importance sampling to
generate paths (and thus work values) according to an arbi-
trary distribution D, here chosen as'®

D(Z,) = Q(Z,)e” "BV Z), (13)

where Q(Z,) is proportional to the probability of occurrence
of an ordinary Jarzynski path and is given below. With this
choice of D the free energy is estimated via (compare to
(Refs. 45-49)

$D,-(112)BW;
, (14)

AF = —kBTln{W

where the = is a reminder that the work values used in the
sum must be generated according to the distribution in Eq.
(13). Since forward work values, W, are utilized in Eq. (14),
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the paths must start in U and end in U,. A similar expression
can be written for reverse work values W,.

To generate work values according to the distribution D,
path sampling must be used, 04574951553 1y path sampling,
entire paths are generated and then accepted or rejected ac-
cording to a suitable Monte Carlo criteria. In general, the
probability of accepting a trial path with n N steps (Z, with
work value W’) that was generated from an existing path (Z,
with work value W) is given by

| Q)P e P

Z,—Z, —(1/2)BW
Q(Z,) Py “re™ 1P

’
PZn—»Zn —

acc min s ( 1 5)

where P}g(e: Y is the conditional probability of generating a
trial path Y from existing path X.

For this study, we generate trial paths by randomly
choosing a “shoot” point \ along an existing path (compare
to Refs. 52, 54, and 55). Then, Langevin dynamics is used to
propagate the system from \;— 0 (backward segment), fol-
lowed by N\,—1 (forward segment). Before running the
backward segment, the velocities at the shoot point must be
reversed and then ordinary Langevin dynamics are used to
propagate the system.52 Once the trial path is complete, all
the velocities for the backward segment are reversed. Since
the stochastic Langevin algorithm is employed in the simu-
lation, it is not necessary to perturb the configurational coor-
dinates at the shoot point to obtain a trial path that differs
from the existing path.

The above recipe for generating trial paths leads to the
following statistical weights for the existing Q(Z,) and trial

0(Z)) paths:
n—1

0(Z,) = e PUO T p(X; = Xi11),
i=0

n—1

0(Z)) = e PUS ] p(x] — x/,,), (16)
i=0

where p(x;— X,,,) is the the transition probability for taking
a dynamics step from configuration x; to xi+1.55 We have
assumed for simplicity that only one dynamics step is taken
at each value of \; however, the approach allows for multiple
steps. The corresponding generating probabilities for the ex-
isting and trial paths are given by

n—1 s—1

7,7 _
Pgen: " =pchoosepperturbH p(Xll - X,',+1)H P(X,-/H - X,I)’

i=s i=0

n—1 s—1

Z,—Z —
PgélnH "= péhoosep[,)erturbl_[ p(Xi - Xi+1)H p(Xi+l - Xi) ’

i=s i=0
(17)

where p(x;,,—X;) is the transition probability of taking a
backward step from x;,; to x;. The “bar” notation is a re-
minder that the velocities are reversed for these segments.
The probability of choosing a particular shoot point A; is
denoted by ppooses and the probability of a particular pertur-
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bation to the configurational coordinates at the shoot point is
giVCl’l by pperturb'

Since we have chosen not to perturb the configurational
coordinates at the shoot point, and any value of \ along the
path is equally likely to be chosen as the shoot point, then
Pperturb =P perturb A0 Penoose=Penoose- N @ddition, since the tran-
sition probabilities obey detailed balance and preserve the
canonical distribution then®

P(Xjp) — X;) = p(x; — Xl'+1)e_B(U}‘Hl(Xi)_U}‘Hl(XHl)). (18)

Note that (18) does not contain the kinetic energy of the
system, and thus is only valid for simulations done at con-
stant temperature, such as in the current study. Inserting Egs.
(16)—(18) into Eq. (15) gives the acceptance criterion for trial
paths [compare to Eq. (45) in Ref. 49]

in:z,’, _ min[1’e-ﬁ(aw-aw’+(1/2)(w’—w))], (19)
where 6W is defined as the work accumulated up to the shoot
point for the existing path,

s—1

W= (U, (x) = Uy (x)] (20)
i=0

i=

and 6W' is the equivalent quantity for the trial path. Note
that Eq. (19) is independent of the details of the fixed-\
dynamics.

To clarify ambiguities in our original presentation of the
SEPS approac:h,10 we also give details for applying it using
overdamped Langevin dynamics (i.e., Brownian dynamics).
In Ref. 10, backward segments were generated using ordi-
nary dynamics with negative forces, i.e., to be very clear, the
force was taken to be identical to the physical force, but
opposite in sign. Thus, the transition probabilities for for-
ward and backward steps are approximately equal,

(Brownian dynamics).
(1)

P(Xi1 — X)) = p(X; — X;p1)

Equality occurs when the forces at x; and x;,, are identical.
The acceptance criterion becomes

Pl = mi n[1, e—ﬁ((1/2)(W’—W)+U0(x('))—U0(x0))]

(Brownian dynamics). (22)

.. . . 49 . .
Therefore, the criticism raised in a recent paper is incor-
rect.

D. Bennett averaging of path sampled work values

The use of bidirectional data is worth considering for the
SEPS method, just as it was for ordinary nonequilibrium
Jarzynski work values. Generalizing Bennett’s method to in-
clude the work values sampled from D gives

D o128V, D g -1
_— Ee+( )BWy
1 + Pl WmAF)

Ny Ny

D o128,
= v 1+ eB(_yﬁ-Wr+AF)

D -1
E e+(1/2),BWr ) (23)
N

r

Thus, to obtain a Bennett-averaged estimate for AF, the path
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sampling algorithm is applied to generate an ensemble of
paths going from U to U; (W, forward) and also from U to
U, (W,, reverse). Then, Eq. (23) is applied to the data.

IV. SIMULATION DETAILS

All alchemical mutations, such as those required for
binding affinity estimation, involve changes to either the size
or charge of a particle or group of particles. Thus, we chose
to test the efficiency and precision of each free energy dif-
ference method detailed above using two relative solvation
free energy calculations. One involves a large change in the
van der Waals radius of a neutral particle in explicit solvent
(“growing”), and the other is a large change in the charge of
the particle while keeping the size fixed (“‘charging”).

The system used in both cases consists of a single
Lennard-Jones particle in a 24.93 A box of 500 TIP3P water
molecules. For all simulations, the molecular simulation
package TINKER 4.2 was used.”” The temperature of the sys-
tem was maintained at 300.0 K using Langevin dynamics
with a friction coefficient of 5.0 ps~'. RATTLE was used to
constrain all hydrogens to their ideal lengths,58 allowing a
2.0 fs time step. A cutoff of 12.465 A was chosen for elec-
trostatic and van der Waals interactions with a smoothing
function implemented from 10.465 to 12.465 A. Tt is ex-
pected that the use of cutoffs will introduce systematic errors
into the AF calculation; however, in this report we are only
interested in comparing AF methodologies—we do not com-
pare our results to experimental data.

For the first test case, a neutral Lennard-Jones particle
was “grown” from 2.126 452 to 6.715 999 A. The sizes were
chosen to be that of lithium and cesium from the OPLS-AA
force field.>® In the second test case, the Lennard-Jones par-
ticle remains at a fixed size of 2.126 452 10%, but the charge is
changed from —e/2 to +e/2. For each test case and each AF
method, the system was initially equilibrated for 100 ps (5
X 10* dynamics steps). The initial equilibration is not in-
cluded in the total computational time listed in the results;
however, since every method was given identical initial
equilibration times, the efficiency analysis is fair.

The \ scaling (i.e., the form of the hybrid potential U,)
used for all AF methods in this study was chosen to be the
default implementation within the TINKER package.57 If a
particle’s charge is varied from g, to ¢y, the hybrid potential
is simply the regular potential energy calculated using a hy-
brid charge of

g =Ngq; + (1 =N)gy. (24)

Similarly, if a particle has a change in the van der Waals
parameters r and e the hybrid parameters are given by

r)\=)\r]+(1—7\)r0,

6)\:)\614‘(1—)\)60. (25)

The free energy slope as a function of A for both the growing
and charging test cases are shown in Figs. 1 and 3. The
smoothness of both plots suggests that a more sophisticated
N scaling is not necessary for this study. If, for example, we
had chosen to grow a particle from nothing, then it is likely
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dF/dX (kcal/mol)
~1

N
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0 0.2 04 0.6 0.8 1
Switching parameter, A

FIG. 1. The slope of the free energy dF/d\ as a function of \ for changing
the Lennard-Jones size of a neutral particle in a box of explicit water. Re-
sults for both TI and AIM methods are shown for 10° dynamics steps. The
data show the averages (data points) and standard deviations (error bars)
from 16 independent simulations for each method. The figure demonstrates
that AIM has the ability to sample the A path more efficiently, thus produc-
ing a much smoother and more precise profile compared to TL. Thus, AIM is
preferred over TI for computing the potential of mean force for this system.
In addition, the smoothness of the profile suggests that the switching func-
tion U, of Eq. (25) used in this report is adequate.

that a different scaling would be needed (such as in Refs. 14,
36, 40, and 60).

A. Thermodynamic integration calculations

For TI, equilibrium simulations were performed at each
value of N\. An equal amount of simulation time was devoted
to each of 21 equally spaced values of A=0.0, 0.05, 0.1, ...,
0.9, 0.95, and 1.0. Averages of the slope dF/d\={(dU/d\),,
shown in Figs. 1 and 3, were collected for each value of A.
The first 50% of the slope data were discarded for equilibra-
tion. Finally, the data were used to estimate the integral in
Eq. (2) using the trapezoidal rule. Note that higher order
integration schemes were also attempted, but did not change
the results, suggesting that the curves in Figs. 1 and 3 are
smooth enough that high order integration schemes are not
needed for this report. Also, the percentage of data that was
discarded for equilibration was varied from 25% to 75% with
no significant changes to the results.

B. Adaptive integration calculations

AIM results were obtained by collecting the slope of the
free energy dF/d\={dU/d\), by starting the simulation
from an equilibrated configuration at A=0 and performing
one dynamics step. Immediately following the single step, a
Monte Carlo move in N\ was attempted, which was accepted
with probability given by Eq. (3). The pattern of one dynam-
ics step followed by one Monte Carlo trial move was re-
peated until a total of 10° dynamics steps (and thus 10°
Monte Carlo attempts) had been performed. The same \ val-
ues used in TI are also used for AIM, thus A=0.0, 0.05, 0.1,
..., 0.9, 0.95, and 1.0 are the only allowed values. For this
report Monte Carlo moves were attempted between neigh-
boring values of \ only, i.e., a move from A=0.35 to 0.4 or
0.3 may be attempted but not to 0.45. Also, all SF(\,) values
of Eq. (4) were initially set to zero. The estimate of the free
energy was obtained by numerically approximating the inte-
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gral in Eq. (2) using the trapezoidal rule. As with TI, higher
order integration schemes did not change the results.

C. Free energy perturbation and equilibrium Bennett
calculations

All free energy perturbation calculations [forward, Eq.
(5), and reverse, Eq. (6)] and equilibrium Bennett computa-
tions [Eq. (8)] were performed on the same set of configura-
tions as for TI. Specifically, equilibrium simulations were
performed at each of 21 equally spaced values of A=0.0,
0.05, 0.1, ..., 0.9, 0.95, and 1.0, and the first 50% of the data
were discarded for equilibration.

D. Jarzynski estimate calculations

Estimates of the free energy using the nonequilibrium
work values were computed using Eq. (11) for Jarzynski av-
eraging and Eq. (12) for Bennett averaging. Forward non-
equilibrium paths were generated by starting the simulation
from an equilibrated configuration at A=0, then incrementing
the value of A, followed by another dynamics step, and so on
until A=1. Thus, only one dynamics step was performed at
each value of N. The work value associated with the path was
then computed using Eq. (10). Between each path, the sys-
tem was simulated for 100 dynamics steps at A=0, starting
with the last A=0 configuration—thus the A=0 equilibrium
ensemble was generated “on the fly.”

Similarly, reverse nonequilibrium paths were generated
by starting each simulation from configurations in the U,
equilibrium ensemble and switching from A=1 to A=0.

E. Single-ensemble path sampling calculations

For the SEPS method, we first generated an initial path
using standard Jarzynski formalism. The only difference be-
tween the paths described above and the initial path for
SEPS was that, due to the computer memory needed to store
a path, the number of \ steps was limited to 500 for this
study. In other words, if the desired path should contain
around 2000 dynamics steps, the simulation would perform
four dynamics steps at each A value giving a total simulation
time of 1996 dynamics steps for each path (note that simu-
lation at N\=1 was not necessary).

Once an initial path was generated as described above, a
trial path was created by perturbing the old path as described
in Sec. Il C. Then, the new path was accepted with prob-
ability given by Eq. (19). Importantly, if the new path was
rejected, then the old path was counted again in the path
ensemble. Also, as with any Monte Carlo approach, an initial
equilibration phase was needed. For this report, the neces-
sary amount of equilibration was determined by studying the
dependence of the average free energy estimate, after 10°
dynamics steps, from 16 independent trials, as a function of
the number of paths that were discarded for equilibration.
The optimal number of discarded paths was then chosen to
be where the average free energy estimate no longer depends
on the number of discarded paths.
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V. RESULTS AND DISCUSSION

Using the simulation details described above, two rela-
tive solvation free energy calculations were carried out in a
box of 500 TIP3P water molecules. Each of the free energy
methods described above were used to estimate AF. Specifi-
cally, we compare:

* AIM using Egs. (2) and (3),
¢ thermodynamic integration (TI) using Eq. (2),
* unidirectional SEPS using Eq. (14),

* bidirectional single-ensemble path sampling with Ben-
nett averaging (BSEPS) using Eq. (23),

* unidirectional Jarzynski averaging of work values (Jarz)
using Eq. (11),

* bidirectional Bennett averaging of Jarzynski work val-
ues (BJarz) using Eq. (12),

e equilibrium Bennett approach (Benn) using Eq. (8), and

» multistage FEPF FEPR directions using, respectively,
Egs. (5) and (6).

A. Growing a Lennard-Jones particle

We first compute the free energy required to grow a neu-
tral particle from 2.126 452 to 6.715999 A in 500 TIP3P
waters.

Figure 1 shows the slope of the free energy (dF/d\
=(dU/d\),) as a function of X\ for both TI and AIM after 10°
Langevin dynamics steps. The figure suggests that AIM can
more efficiently sample the profile. In AIM, configurations
are not forced to remain at a particular A, but may switch to
another value of N if it is favorable to do so. Such “cross-
talk” is apparently the source of the smoother \ profile com-
pared to TL.

Table I shows AF estimates for the different approaches
used in this report. Note that for all nonequilibrium ap-
proaches, only the most efficient data are shown. For SEPS
and BSEPS all paths were composed of 500 N\ steps (re-
stricted to 500 due to computer memory) with 40 dynamics
steps at each value of \. For Jarz and BJarz the paths were
composed of 10 000 \ steps with one dynamics step at each
value of \. For all of these nonequilibrium data, the standard
deviation of the work values were oy =~0.8 kcal/mol
~1.3kgT, in agreement with previous studies.'>* At least
five different path lengths were attempted for each nonequi-
librium method to determine the most efficient.

Table I demonstrates that, for long simulation times, all
methods produce roughly the same average AF estimate.
Also, the table clearly shows that, given 10° dynamics steps,
AIM provides the most precise free energy estimates.

Table II shows the approximate number of dynamics
steps needed by each method to obtain a free energy estimate
within a specific tolerance of AF),, 4 (average of all esti-
mates at 10% dynamics steps). Note that the number of dy-
namics steps needed for the SEPS and BSEPS methods are
largely due to the fact that whole paths must be discarded for
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TABLE I. Free energy difference estimates in units of kcal/mol obtained for changing the Lennard-Jones size of a neutral particle in a box of explicit water.
Results are shown for various methods described in the text as a function of the number of dynamics steps used in the simulation. Table entries are the mean
estimates from 16 independent simulations with the standard deviation shown in parentheses. For single-ensemble path sampling (SEPS and BSEPS) and
Jarzynski methods (Jarz and BJarz), only the most efficient results are shown. The table shows that in the limit of long simulation times (10® dynamics steps)
all methods produce average AF estimates that roughly agree. The table also shows that AIM provides the most precise long-simulation estimate.

Steps AIM TI SEPS BSEPS Jarz Blarz Benn FEPF FEPR

2E3 16.3(4.6) 16.5(6.1) 16.7(6.2) 18.7(6.7) 14.5(5.7)
4E3 14.4(3.9) 13.2(4.4) 13.4(4.4) 14.7(4.7) 11.9(4.2)
9E3 10.4(3.3) 11.2(3.6) (1 3) 11.3(3.6) 12.3(3.9) 10.1(3.3)
1.7E4 8.94(2.35) 9.7(2.46) 7. 56(0 93) 7.53(1.13) 9.75(2.46) 10.48(2.70) 8.92(2.26)
3.5E4 7.51(0.52) 8.32(1.35) 7.62(0.84) 7.47(0.71) 8.36(1.38) 8.91(1.63) 7.74(1.11)
TE4 7.38(0.48) 7.89(1.17) B 7.55(0.67) 7.38(0.59) 7.92(1.19) 8.35(1.40) 7.46(0.97)
1.3E5 7.35(0.36) 7.18(0.65) 7.15(0.79) 7.34(0.49) 7.36(0.38) 7.22(0.64) 7.56(0.68) 6.83(0.68)
2.7ES5 7.34(0.23) 7.19(0.22) 7.19(0.62) 6.95(0.56) 7.35(0.44) 7.28(0.24) 7.21(0.22) 7.29(0.25) 7.08(0.20)
5.5E5 7.22(0.12) 7.18(0.11) 7.19(0.29) 7.12(0.46) 7.32(0.28) 7.23(0.20) 7.18(0.12) 7.22(0.11) 7.16(0.13)
1E6 7.19(0.07) 7.26(0.18) 7.17(0.18) 7.23(0.20) 7.25(0.23) 7.22(0.14) 7.26(0.18) 7.28(0.18) 7.24(0.20)

equilibration of the path ensemble. For all methods except
AIM, the table entries for Table II were estimated using lin-
ear interpolation of the data in Table I. From the data in
Table II, if the desired precision is less than 1.0 kcal/mol,
then AIM, Jarz, and BJarz appear to be the best methods.
However, if the desired precision is less than 0.5 kcal/mol,
then AIM is the best choice.

The entropy contribution to the free energy difference
TAS can also be estimated for growing a particle in solvent.
Specifically, we use the fact that the free energy can be writ-
ten as AF=(U),—(U)y—TAS, where (U), is the average po-
tential energy for system i. Thus, we compute TAS
=-12.9+2.6 kcal/mol, where the uncertainty for each poten-
tial energy average was estimated using the block-averaging
technique61 applied to a 2.0 ns equilibrium simulation for the
system.

The large uncertainty in the entropy difference is ex-
pected due to large uncertainties in the potential energy av-
erages (U), and (U),. Note that methods for obtaining TAS
with a lower uncertainty are possible by computing AF at
several temperatures (see, for example, the discussion in Ref.

TABLE II. Number of dynamics steps necessary to be within a specified
tolerance of the correct result AF),, ,=7.23 kcal/mol, average AF esti-
mate at 10° dynamics steps for all methods, for growing a Lennard-Jones
particle in explicit solvent. The first column is the method used to obtain the
estimate. The second column is the number of dynamics steps needed to
estimate AF within 1.0 kcal/mol of AFy,, ¢ With an uncertainty less than
1.0 kcal/mol. The third column is the number of dynamics steps needed to
obtain an estimate within 0.5 kcal/mol with an uncertainty less than
0.5 kcal/mol.

Method Within 1.0 kcal/mol Within 0.5 kcal/mol
AIM 23 000 30 000
TI 89 000 181 000
SEPS 140 000 377 000
BSEPS 279 000 444 000
Jarz 18 000 127 000
Blarz 26 000 96 000
Benn 90 000 180 000
FEPF 104 000 191 000
FEPR 60 000 184 000

62). Here, the entropy difference is used only to characterize
the free energy calculation, thus, we make no attempt to
decrease the uncertainty in our entropy estimate.

The estimated entropy difference, on its own, suggests
that it may be possible to use fewer stages in our free energy
computation using Benn, FEPF, and FEPR.® However, in
these approaches, the last snapshot from a current stage is
used to begin sampling at the next stage, and we found that
using fewer stages increased the amount of equilibration
time needed at each stage (data not shown). Thus, for this
system, we did not obtain significant changes in overall effi-
ciency by changing the number of stages.

For the current study, we have obtained converged AF
results as indicated by the agreement between all methodolo-
gies in Table I. In the absence of such evidence, it still may
be possible to gauge convergence by computing the relative
entropy, as described in Refs. 31 and 32.

Thus, we conclude that, for growing a Lennard-Jones
particle in explicit solvent, the preferred method depends on
the type of estimate one wishes to generate. If a very precise
high-quality estimate is desired, then AIM is the best choice
by a considerable margin. If a very rapid estimate of AF,
with an uncertainty of less than 1.0 kcal/mol, is desired, then
comparable results are seen using AIM, Jarz, and Blarz
methodologies. If the AF estimate is to be within
0.5 kcal/mol, then AIM is the best choice.

Finally, if the desired result is the potential of mean
force, then AIM will generate a much smoother curve than
TL

1. Fast-growth unidirectional data

We now consider nonequilibrium unidirectional fast-
growth data, i.e., generated by switching the system rapidly
from U, (small particle) to U, (large particle). Importantly,
there will be an advantage to generating unidirectional data
in some cases, since only the U, equilibrium ensemble is
needed to estimate AF.

In contrast to the data shown in Tables I and II, where
the lengths of the nonequilibrium switching trajectories were
preoptimized, here we focus on the efficacy of the methods
using nonoptimal, rather fast switching. After all, when at-
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FIG. 2. (a) “Fast-growth” unidirectional free energy difference estimates
obtained for changing the Lennard-Jones size of a neutral particle in a box
of explicit water. Results are shown for both SEPS and Jarz methods as a
function of the number of dynamics steps used in the simulation. For both
methods, fast-growth work values were generated by simulating roughly
2000 dynamics steps per path, which is ten times shorter than optimal. The
solid horizontal line represents the best estimate of the free energy differ-
ence AFy,, gm based on averaging all results shown in Table T at 10° dy-
namics steps. The averages (data points) and standard deviations (errorbars)
are from 16 independent simulations. (b) Histograms of the work values
used to generate the free energy estimates for both the SEPS and Jarz meth-
ods. The plots demonstrate the potential usefulness of using path sampling
over regular Jarzynski averaging. Specifically, if the work values are fast
growth and unidirectional, then SEPS is able to bias the work values in such
a way to improve the free energy estimate. Note that for all the SEPS data
shown, the first 50 work values are thrown away for equilibration, as de-
scribed in Sec. IV E.

tempting a free energy computation on a new system, there is
no way to know in advance the optimal path length (number
of \ steps). Substantial optimization may be needed for both
SEPS and Jarz methods to work efficiently.

Here, we test the SEPS and Jarz methods using short
paths with an equal number of dynamics steps. For SEPS,
500 N steps with four dynamics steps at each value of N were
used, producing a distribution of work values with oy
=2.1 kcal/mol. For Jarz, 2000 N steps with one dynamics
step at each value of N\ was used, producing a distribution of
work values with oy=2.9 kcal/mol. Note that these paths
are roughly ten times shorter than optimal and thus oy is
three to four times larger than the optimal value of ~kpT.

Figure 2 gives a comparison between SEPS and Jarz
methods for the fast-growth unidirectional paths just de-
scribed. The upper figure (a) shows the average free energy
estimates and standard deviations for both the SEPS and Jarz
methods. The lower figure (b) gives the histogram of the
work values for each method. Both figures also show the
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FIG. 3. The slope of the free energy dF/dN\ as a function of \ for a changing
the charge of a Lennard-Jones particle in a box of explicit water from —e/2
to +e/2. Results for both TI and AIM methods are shown for 10° dynamics
steps. The data show the averages (data points) and standard deviations
(error bars) from 16 independent simulations for each method. The differ-
ences between TI and AIM are too small to resolve on the plot shown;
however, it should be noted that the average uncertainty in the data for AIM
is 0.38 kcal/mol and for TI is 1.05 kcal/mol, suggesting that AIM has the
ability to produce a more precise profile compared to TI. Thus, AIM is
preferred over TI for computing the potential of mean force for this system.
The smoothness of the profile also suggests that the switching function U,
of Eq. (24) used in this report is adequate.

“correct” value AF)qn, im, generated from a very long simu-
lation. The figures clearly demonstrate that, for fast-growth
data, SEPS has the ability to “shift” the work values such
that the AF value is near the center of the work value
distribution—rather than in the tail of the distribution as with
the Jarz method. Thus, the SEPS results converge more rap-
idly than Jarz to the correct value of AF.

We suggest that the the SEPS method may find the great-
est use for the ability to bias fast-growth work values to
obtain the correct value of AF, as shown here.

B. Charging a Lennard-Jones particle

We next compute the free energy required to charge a
particle from —e/2 to +e/2 in 500 TIP3P waters.

Figure 3 shows the slope of the free energy (dF/d\
=(dU/d\),) as a function of \ for both TI and AIM after 10°
Langevin dynamics steps. The data shown in the plot are the
mean (data points) and standard deviation (errorbars) for 16
independent trials. While the differences between TI and
AIM are too small to resolve on the plot shown, the average
uncertainty in the data for AIM is 0.38 kcal/mol and for TI is
1.05 kcal/mol, suggesting that AIM has the ability to pro-
duce more precise slope data compared to TI.

Table III shows AF estimates for the different ap-
proaches. For all nonequilibrium approaches, only the most
efficient data are shown. For SEPS and BSEPS the paths
were composed of 500 \ steps (restricted to 500 due to com-
puter memory) with 80 dynamics steps at each value of \.
For Jarz the paths were composed of 40 000 A\ steps with one
dynamics step at each value of N, and for BJarz, 20 000 N\
steps with one dynamics step at each value of A were used.
For all of these nonequilibrium data, the standard deviation
of the work values were oy =0.8 kcal/mol=1.3kzT, in
agreement with previous studies,'* and with the growing
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TABLE III. Free energy difference estimates in units of kcal/mol obtained for changing the charge of a Lennard-Jones particle from —e/2 to +e/2 in a box
of explicit water. Results are the averages from 16 independent simulations for various methods described in the text as a function of the number of dynamics
steps used in the simulation. The standard deviation is shown in parentheses. For single-ensemble path sampling (SEPS and BSEPS) and Jarzynski methods
(Jarz and BJarz), only the most efficient results are shown. The table shows that in the limit of long simulation times (10 dynamics steps) all methods produce
average AF estimates that roughly agree. The table also shows that AIM and BJarz approaches provide the most precise long-simulation estimate.

Steps AIM TI SEPS BSEPS Jarz Blarz Benn FEPF FEPR
2E3 8.5(5.5) 24.5(2.3) 24.4(2.3) 28.7(2.8) 20.0(2.1)
4E3 9.7(6.6) 21.5(3.0) 21.4(3.1) 25.4(3.0) 17.7(3.1)
9E3 14.6(11.4) 20.1(1.7) . 20.1(1.8) 22.6(1.8) 17.6(2.1)
1.7E4 18.6(10.8) 18.5(1.2) 18.5(1.2) 20.3(1.1) 16.8(1.4)
3.5E4 19.7(4.6) 18.44(0.87) 19.15(0.70) 18.42(0.74) 18.39(0.90) 19.56(1.05) 17.34(0.70)
TE4 18.42(0.43) 18.38(0.69) 18.82(0.61) 18.29(0.40) 18.33(0.69) 19.18(0.87) 17.64(0.69)
1.3E5 18.41(0.26) 18.34(0.71) B B 18.72(0.55) 18.20(0.46) 18.28(0.72) 18.76(0.83) 17.78(0.80)
27E5 18.27(0.21) 18.35(0.45) 18.47(1.03) 18.23(0.59) 18.55(0.42) 18.16(0.29) 18.29(0.45) 18.62(0.54) 18.09(0.46)
5.5E5 18.26(0.13) 18.28(0.28) 18.25(0.49) 18.43(0.43) 18.44(0.32) 18.13(0.19) 18.20(0.29) 18.28(0.39) 18.25(0.26)
1E6 18.23(0.13) 18.28(0.30) 18.23(0.30) 18.30(0.42) 18.32(0.26) 18.18(0.16) 18.21(0.31) 18.20(0.33) 18.25(0.31)

data in this study. At least four different path lengths were
attempted for each nonequilibrium method to determine the
most efficient.

Table III demonstrates that, for long simulation times, all
methods produce roughly the same average AF estimate.
Also, the table shows that, given 10° dynamics steps, AIM
and BJarz methodologies provide the most precise free en-
ergy estimates.

Using the same procedure as for the growing problem
above, we estimate the entropy contribution to the free en-
ergy difference as TAS=6.9+3.5 kcal/mol. Again, although
the small entropy contribution suggests that it may be pos-
sible to use fewer stages in Benn, FEPF, and FEPR
calculations,” we found that using fewer stages increases the
amount of equilibration time needed at each stage (data not
shown), and thus efficiency was not significantly affected by
this type of change in staging.

For fast estimation of free energy differences, Table IV
shows the number of dynamics steps needed by each method
to obtain a free energy estimate within a specific tolerance of
AF)4ne sim (average of all estimates at 10% dynamics steps).

TABLE IV. Number of dynamics steps necessary to be within a specified
tolerance of the correct result AF)y,, ,=18.24 kcal/mol, average AF esti-
mate at 10® dynamics steps for all methods, for charging a Lennard-Jones
particle in explicit solvent. The first column is the method used to obtain the
estimate. The second column is the number of dynamics steps needed to
estimate AF within 1.0 kcal/mol of AFy,, g With an uncertainty less than
1.0 kcal/mol. The third column is the number of dynamics steps needed to
obtain an estimate within 0.5 kcal/mol with an uncertainty less than
0.5 kcal/mol.

Method Within 1.0 kcal/mol Within 0.5 kcal/mol
AIM 52 000 64 000
TI 27 500 243 000
SEPS 291 000 515 000
BSEPS 399 000 487 000
Jarz 40 000 180 000
Blarz 40 000 69 000
Benn 29 000 245 000
FEPF 43 000 335 000
FEPR 26 000 252 000

Note that the number of dynamics steps needed for the SEPS
and BSEPS methods is large due to the fact that many paths
must be discarded for equilibration of the path ensemble. For
all methods except AIM, the entries in Table IV were esti-
mated using linear interpolation of the data in Table III. From
the data in the table, if the desired precision is less than
1.0 kcal/mol, then all methods other than SEPS and BSEPS
produce comparable results. However, if the desired preci-
sion is less than 0.5 kcal/mol, then AIM and Blarz ap-
proaches are best.

We conclude that, when charging a Lennard-Jones par-
ticle in explicit solvent, the preferred methodology depends
on the type of estimate one wishes to generate. If a very high
quality estimate is desired, then AIM is the best choice,
closely followed by Blarz. If a very rapid estimate of AF,
with an uncertainty of less than 1.0 kcal/mol, is desired, then
comparable results are seen using all methodologies except
for SEPS and BSEPS. If the AF estimate is to be within
0.5 kcal/mol, then AIM and BlJarz are the best choices.

Finally, if the desired result is the potential of mean
force, then AIM will generate a much smoother curve than
TL

C. A second look at a two-dimensional model

Because SEPS proved orders of magnitude more effi-
cient than TI and Jarz in the study of a two-dimensional
rnodel,10 we return to that model in an effort to understand
the decreased effectiveness of SEPS in the present study.
Specifically, we use the model from Ref. 10, but now for a
wide range of conformational sampling barrier heights (fixed
\), and then compare SEPS to TI, as in our original study.
Note, that we use the term “conformational sampling barrier”
to distinguish it from the barrier in A space.

Some alterations to our approach in Ref. 10 were neces-
sary to provide a fair comparison in the context of the
present report. The results in Ref. 10 were obtained for very
short paths, large perturbations of the shoot point, and a con-
formational sampling barrier height of 14.0kz7T in U,. For
consistency with the present studies, SEPS results were gen-
erated with no perturbation of the shoot point, much longer
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TABLE V. Number of dynamics steps necessary to be within 0.5k3T of the
analytical result for AF with a 0.5kzT or less standard deviation for the
two-dimensional model in Ref. 10. The first column is the barrier height of
the potential energy surface in kz7 units. The second and third columns are
the total numbers of dynamics steps using SEPS with, respectively, 200
work values and 20 000 work values. The fourth column is the total number
of dynamics steps using TI with using 51 equally spaced values of . For
both TI and SEPS, half of the generated data was thrown away for equili-
bration.

Barrier (kzT) SEPS long SEPS short TI

1.0 60 000 200 000 15 300
2.0 120 000 500 000 35700
4.0 400 000 1 000 000 204 000
6.0 1400 000 1400 000 1 020 000
8.0 8 000 000 1 600 000 5 100 000
10.0 40 000 000 2400 000 20 400 000
12.0 80 000 000 4000 000 76 500 000
14.0 200 000 000 10 000 000 204 000 000

paths, and for a range of conformational sampling barrier
heights. Both TT and SEPS simulations utilized Brownian
dynamics to propagate the system. For SEPS, paths were
generated as described in the present report (but with no
velocity), and accepted with the probability given in Egq.
(19).

For completeness, we give the two-dimensional potential
used:"" Uy(x,y)=(x+2)2+y? and U,(x,y)=(A710){((x—1)?
—y9)2+10(x>=5)>+ (x+y)*+(x—y)*}, where A is varied to
change the height of the barrier for U;. Note that there is
only one barrier, which is parallel to the y axis, and all paths
must necessarily cross this barrier to get from one well to the
other (see Ref. 10).

Results for the two-dimensional model using SEPS and
TI are shown in Table V. The free energy change is for
switching between a single-well potential and a double-well
potential with a conformational barrier height in kg7 units
given in the first column. The next three columns give the
total numbers of dynamics steps needed for the AF estimate
to be within 0.5kzT of the correct value with 0.5kzT or
smaller standard deviation (estimated over at least 100 tri-
als): the second and third columns are for SEPS where either
200 (long trajectories) or 20 000 (short trajectories) work
values were generated with 50% of the work values dis-
carded for equilibration, and the fourth column is TT using 51
evenly spaced values of A with 50% of the data at each value
of N\ discarded for equilibration.

Table V clearly shows that, for very low conformational
barrier height, TI is much more efficient than SEPS, and that
the most efficient SEPS is obtained using longer paths and
thus fewer work values. For increasing conformational bar-
rier heights, SEPS using long paths and TI become compa-
rable, while SEPS using short paths becomes the most effi-
cient. For the largest conformational barrier height tested in
this study (14.0kgT), SEPS using short paths is at least 20
times more efficient than either TI or SEPS using long paths.

Since the results for growing and charging an ion in
solvent showed that TI was more efficient than SEPS, we
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suggest that the free energy landscapes for the molecular
systems used in this study have rather modest conforma-
tional sampling barriers.**©

VI. CONCLUSIONS

We have carefully studied several computational free en-
ergy difference (AF) methods, comparing efficiency and pre-
cision. The test cases used for the comparison were relative
solvation energy calculations involving either a large change
in the Lennard-Jones size or in the charge of a particle in
explicit solvent. Specifically, we compared adaptive integra-
tion method (AIM), thermodynamic integration (TI), path
sampling of nonequilibrium work values using both a
Jarzynski unidirectional formalism (SEPS) and a Bennett-
type bidirectional formalism (BSEPS), Jarzynski (Jarz) and
Bennett (BJarz) averaging of nonequilibrium work values,
equilibrium Bennett (Benn), and free energy perturbation
(forward, FEPF, and reverse, FEPR).

AIM (Ref. 9) was found to provide very high quality,
precise estimates, given long simulation times (10° total dy-
namics steps in this study), and also allowed very rapid es-
timation of AF. In addition, AIM provided smooth free en-
ergy profiles (and thus smooth potential of mean force
curves) as compared to TI: (see Figs. 1 and 3). Clearly, AIM
was the best all-around choice for the systems studied here.

BJarz (Ref. 25) was also found to perform very well,
with long-simulation results that were second only to AIM.
However, it should be noted that the data shown in this study
are for the most efficient path lengths only. To determine the
optimal path length, many simulations were performed, add-
ing to the overall cost of the method. Also, our results
showed that using bidirectional data (BJarz) produced con-
siderably more precise results than using unidirectional data
(Jarz).

The SEPS method'® is shown to provide accurate free
energy estimates from “fast-growth” unidirectional nonequi-
librium work values. Specifically, in cases where the stan-
dard deviation of the work values is much greater than kgT
(ow=kgT), the SEPS method can effectively shift the work
values to allow for more accurate AF estimation than is pos-
sible using ordinary Jarzynski averaging. Interestingly, using
bidirectional data (BSEPS) did not increase the precision of
the AF estimate, and perhaps made it somewhat worse.

We also find, in agreement with previous studies,
that the greatest efficiency for the Jarz approach is when
ow= 1kgT. For the first time, we also show that SEPS is also
most efficient when oy = lkgT for the molecular systems
studied in this report.

We have also suggested an explanation—with poten-
tially quite interesting consequences—for the decreased ef-
fectiveness of SEPS in molecular systems. By reexamining
the two-dimensional model used in our first SEPS paper,]0
we find that SEPS can indeed be much more more efficient
than TI, but only when the conformational sampling barrier
is very high (>kgT). This suggests that the configurational
sampling barriers encountered in the molecular systems stud-
ied here are fairly modest, counter to our own expectations.
A key question is thus raised. How high are conformational

13,25
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sampling barriers encountered in free energy calculations of
“practical interest?” (See also Refs. 64 and 65.)

We remind the reader that the specific results of this
study are valid only for the types of AF calculations we
considered, namely, growing and charging a Lennard-Jones
particle in explicit solvent. However, we believe the results
should prove pertinent to an array of alchemical computa-
tions built from the types of “elementary” changes we con-
sidered. We also believe the results may have bearing on
other types of free energy calculations in molecular systems
characterized by modest conformational sampling barriers,
as were apparently present in our studies.
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