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6.  Empirical Potentials derived from structures  
 
a.  Why is there a need for empirical potentials? 
 
Empirical potentials simply provide a way to summarize the interactions seen in proteins.  
They have the major utilities of providing a quantitative estimate of inter-residue 
interactions in folded proteins and permitting the rapid scoring of different conformations 
in order to identify the most probable sequence-structure matches.  They are based on a 
library of structures, usually a non-redundant set of crystal structures.  As such, they 
include averages over many factors, but especially over variable solvent conditions.  The 
resultant functions reflect principally the strength of the hydrophobic effect, but can also 
tell us about the specificities manifested by polar interactions. 
 
There is a long history to the use of such adjustable parameters to reflect the effective 
interactions for various conformations.  These parameters are usually chosen to deal with 
specific situations; for instance, the effect of environment on the relative populations of 
rotational isomers {Mizushima 1954 ID: 388}.  In the case of polymer modeling, these 
were cast in the form of parameters representing interaction strengths between pairs of 
atomic groups at close approach.  Typically these have been evaluated by fitting physical 
measurements such as the spectra of small molecules, to give rotational isomer populations, 
or at the other extreme, data for polymeric chains, to match their overall dimensions.  Much 
of this approach to utilize adjustable energy parameters has been summarized in the two 
monographs by Flory {Flory  1969 ID: 460} and by Mattice and Suter {Mattice & Suter 
1994 ID: 493}.  
 
Admittedly, the circumstances prevailing in proteins are substantially more complex than 
in simple repeating polymers because many more parameters are required to account for 
the greater atomic complexity.  Such an evaluation of parameters is feasible only if it is 
possible to make some reduction in the number of interacting entities, either by coarse-
graining, i.e., considering only the 20 residue types instead of atoms, or alternatively by 
grouping atoms into a limited number of atom types, usually fewer than 20 types.   
 
In addition, it could be imagined that different effective potentials might be operative at 
different stages of folding since the environment changes in the course of folding.  For 
instance, at early stages the state more nearly resembles solvated conditions; whereas at 
later stages in a compact state, a high density of residue contacts would obtain, more 
similar to the crystalline state.  This would affect the effective individual conformational 
preferences in significant ways.  Such dependences can be dealt with effectively by 
defining different reference states, i.e. by considering interacting pairs to form from a 
defined starting state specific to each case.  Indeed specifying the reference state is the 
most critical aspect for the successful application of these empirical potentials. 
 
Developing simplified representations of protein structure and statistical potentials suitable 
to represent interactions at lower levels of resolution is motivated by three considerations, 
two theoretical and one experimental.  From a theoretical point of view, full atomic 
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description of protein structure, even though more informative, still has some limited 
applicability, in view of the time and length scales of many observed phenomena.   It is 
impossible with the present computational technology to explore all stages of folding and 
all motions in full atomic detail, within reasonable computation time.  Low resolution 
methods based on coarse-grained models and parameters appear to be the most practical 
approach for unraveling complex issues in protein folding and recognition {Levitt 1976 ID: 
1009}{Jernigan 1992 ID: 1008}.  In addition to computational limitations, a further point is 
the fact that atomic semi-empirical potentials as commonly used discriminate poorly 
between correctly folded and misfolded conformations {Novotny, Bruccoleri, et al. 1984 
ID: 282}{Novotny, Rashin, et al. 1988 ID: 199}{Wang, Zhang, et al. 1995 ID: 23}, 
principally because of their inadequacies in accounting for solvent effects.  Typically these 
potentials do not perform well in selecting native folds, although many improvements are 
underway.  Many studies have demonstrated the requirement for a sufficiently pronounced 
energy minimum or “energy gap” {Shakhnovich 1994 ID: 980}{Sali, Shakhnovich, et al. 
1994 ID: 1016}. The lack of a suitable potential function, rather than the design of a 
folding algorithm, has been suggested {Sali, Shakhnovich, et al. 1994 ID: 955} to be the 
major bottleneck to structure prediction.  The neighborhood of the native state needs to 
have only relatively low potential energy barriers, in order for the protein to fold into its 
native state {Karplus & Sali 1995 ID: 1021}.  Conventional atomic potentials do not 
usually behave this way.  A lower resolution description can reduce the number of states 
and also smooth the barriers between local minima.  These are important practical 
considerations for simulations.  From the experimental point of view, extremely large 
numbers of high resolution structures are now available from X-ray crystallography, 
offering a wealth of information.  These structures may be used for extracting the so-called 
knowledge-based potentials of mean force, and can yield effective free energies associated 
with the various inter-residue contacts in globular proteins.  
 
There are many possible applications of empirical potential functions: 1) to discriminate 
good protein folds from bad ones, 2) similarly, to thread a given sequence through many 
different structures and choose the best, 3) to thread inversely by choosing the best 
sequence for a fixed structure, 4) to inform us about various aspects of protein structures, 
and in particular, improve our understanding of the dominant interactions stabilizing native 
structures, and 5) to bind two proteins together in the best arrangement out of the many 
mutual arrangements between the two rigid proteins.  There will be a particular emphasis 
on item four in this section.  In principle, the same set of potential functions can be utilized 
for any of the first four purposes.  The principal obstacle to this is the proper definition of 
reference states.   
 
b.  The extraction of empirical potentials relies on the applicability of the Inverse 
Boltzmann Principle 
 
The practice of extracting knowledge-based potentials for proteins was initiated by Tanaka 
and Scheraga {Tanaka & Scheraga 1976 ID: 1029}.  A more rigorous determination of the 
effective inter-residue contact potentials, including both solvent and size effects, was 
subsequently made by Miyazawa and Jernigan {Miyazawa & Jernigan 1985 ID: 1010}.  
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The Miyazawa-Jernigan contact potentials consist of 210 parameters (for a given reference 
state) usually organized into 20 x 20 symmetric matrices, each element of which 
corresponds to a given pair of residues. Among the potentials developed in different ways 
and widely used in the literature are those of: Eisenberg and coworkers {Lüthy, Bowie, et 
al. 1992 ID: 1070} who evaluated the environment of each amino acid in each structure on 
the basis of several properties in the so-called Profile method, and Sippl {Sippl 1990 ID: 
1001} who expressed the inter-residue interactions in terms of distance-dependent 
potentials. 
 
The basic assumption adopted in extracting empirical interaction potentials in these and 
many other similar studies is the so-called Inverse Boltzmann principle. According to the 
Boltzmann principle, the probability of occurrence of a given conformational state of energy 
E scales with the Boltzmann factor exp{-E /RT}, where R is the gas constant (1.987 x 10-3 
kcal.mol-1K-1) and T is the absolute temperature (RT ≈ 0.6 kcal/mol near room 
temperature). The probability, or frequency of occurrence of a given state, or a given 
interaction, can thus be calculated given the energy of that interaction. The inverse 
Boltzmann law, on the other hand, calculates the energies from the probabilities, -or more 
precisely from the natural logarithm of the observed frequencies. In the application of the 
inverse Boltzmann law to the extraction of inter-residue potentials from databank structures, 
a large ensemble of non homologous known structures is considered; and the frequencies of  
interactions between all pairs of amino acids are analyzed.  In a strict sense, the applicability 
of the inverse Boltzmann law depends on the accessibility of the complete set of 
conformational states. The observed ensemble of database structures does not conform with 
this requirement {Thomas & Dill 1996 ID: 956}. Yet, the extracted energy data have been 
extensively tested in theoretical analyses and simulations, and have proven to be sufficiently 
robust and discriminative for recognizing the correct sequence-structure matches (see 
below), which lends support to their use in theoretical and numerical studies of protein 
structures.    
 
 
c.  How to use a simple model to extract potentials? 
 
In general, the residue-specific potential of mean force between two interaction sites, or a 
pair of residues of types A and B, located within a distance range r ± ∆r is given by the 
Boltzmann relation 
 

∆WAB(r) = - RT ln [pAB(r ± ∆r)/pXX(r ± ∆r)] = WAB(r) - WXX(r) (IV.6.1) 
 
where pAB(r ± ∆r) is the probability of finding the specific pair [A, B] at a separation in the 
range r ± ∆r, and pXX(r ± ∆r) is the reference probability, for the occurrences of all residue 
types X, R is the gas constant and T is the absolute temperature.  ∆WAB(r) also represents 
the free energy change associated with the formation of the contact pair A-B.  WXX(r) may 
be viewed as the average potential existing between all types of residue pairs, typical of 
inter-residue interactions in folded structures 
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This expression already depends on several assumptions: (i) the choice of the reference 
state, (ii) the applicability of Boltzmann statistics, (iii) the choice of interaction sites in 
each residue, and (iv) the discretization of conformational space into intervals of width 2∆r.  
Two other fundamental issues implicit in eq IV.6.1 are: (v) the potential energy is 
expressed only as a sum of pair-wise interactions, ignoring many body terms, and (vi) each 
pair of specific residue types A, B is assumed to behave independently of all others, 
regardless of the chain connectivity, i.e., ignoring constraints imposed by specific 
sequential neighbors, and context or environmental conditions.  Finally, the experimental 
data are assumed to be sufficiently large to provide a truly representative sample of all 
possible interacting forms, including, for example, all orientations.  And indeed this 
averaging over a wide range of interacting conformations causes some loss of specificity 
that is inherent to coarse-grained models. 
 
This approach is typically simplified further by summing the sampled counts over all 
distances up to a certain limiting value, RC.  This limit should be chosen so that most pairs 
within this distance are actually interacting, all pairs of residues further apart are assumed 
not to interact.  An appropriate basis for selecting this cutoff distance is to include the first 
coordination sphere of residues that can be selected by analyzing the distribution of residue 
pairs in known structures.  In this case eq IV.6.1 becomes 
 
 ∆WAB(RC) = - RT ln [pAB(r ≤ RC) / pXX(r ≤ RC)]    (IV.6.2) 
 
Figure IV.6.1 shows that within the range 6.5 – 7.0 Å can be found an appropriate value of 
RC to include the first shell of neighbors.  On this basis the general approach followed for 
data collection of interacting residues is shown in Figure IV.6.2.  The main procedure is to 
count the number of pairs of different types in the neighborhood of a central residue of a 
given type within the coordination sphere of radius RC.  This procedure is repeated for all 
residues and all proteins.  A major assumption is that the empty sites in the neighborhood 
of the examined residue are filled by effective solvent molecules, or by a hypothetical group 
of water molecules, whose volume is equal to that of an average residue, as illustrated in 
Figure IV.6.2.  
 
Evaluation of the precise number of solvent molecules coordinating a given residue is 
critically important, inasmuch as solvation, or the hydrophobic effect, is an essential 
property that dominates the effective the inter-residue interactions.  Let us consider for 
example residues of type A.  Let the total number of residues of type A in the dataset of 
structures be NA, and the total number of pairs, summed over all non-bonded neighbors 
(residue ‘X’ and solvent ‘0’) be NAX + NA0.  It is possible to define two mean coordination 
numbers for each residue type: the total coordination number, <qA>, given by 
 
  <qA> = (NAX + NA0) /NA       (IV.6.3) 
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Figure IV.6.1.  Potential of mean force WXX(r) between side chain-side chain (S-S), side chain-backbone (S-
B) and backbone-backbone (B-B) sites of interaction, obtained from 150 X-ray elucidated protein structures 
{Jernigan & Bahar 1996 ID: 161}{Bahar & Jernigan 1997 ID: 81}.  Backbone interaction centers are 
Cα atoms. Side chains sites are defined by a group of terminal atoms selected to be specific.  All (S-S), (S-B) 
and (B-B) pairs separated respectively by three or more, four or more, and five or more residues along the 
sequence are considered, yielding residue non-specific potentials characteristic of compact globular 
structures.  Multiple minima correspond to consecutive coordination shells.  A value of  RC = 7.0 Å is 
indicated as an upper bound for including all neighbors located within a first coordination shell.   Figure 
taken from {Jernigan & Bahar 1996 ID: 161}. 
 
 

 
 
 
Figure IV.6.2.   Schema for collecting interacting residue pair data from coarse grained protein structures. 
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and the residue coordination number 
 
  <qA

X> = NAX /NA = ΣB NAB /NA     (IV.6.4) 
 
 
which is given essentially by the average number of contacts residues of type A make with 
other residues, only.  NAB designates all contacts of type A-B, and the summation in eq 
IV.6.4 is performed over all 20 types of contacts, A-X.  Clearly, the number of effective 
solvent molecules coordinating A is <qA

0>  = <qA> - <qA
X> = NA0 /NA.  The coordination 

numbers depend on RC, and it is better to designate them as <qA(RC)>, <qA
X(RC)>, and 

<qA
0(RC)>.  Evaluation of <qA

X(RC)> is straightforward.  It suffices to count all residues of 
type A and all their inter-residue contacts in the examined dataset of structures.  
Calculation of <qA>, on the other hand, is more difficult, because database structures do 
not usually contain solvent molecules.  An indirect method is to use the mean field 
approximation {Miyazawa & Jernigan 1985 ID: 1010} 
 
  <qA(RC)> = (4πRC

3/3 – VA) / VX
A(RC) – qA

b(RC)    (IV.6.5)   
 
Here VA is the volume occupied by residue, and which is excluded to all its neighbors, VX

A 
(RC) is the average volume of all residues X located within RC around A, to be determined 
from a statistical examination of databank structures, and qA

b(RC) is the average number of 
bonded (first neighbors along the sequence) residues located within RC.  See Table IV.6.1 
for the values of VA, qA(RC), VX

A(RC), and qA
b(RC) for RC = 6.5 Å, obtained using the side 

chain centroid as the interaction site for each residue.   
 
Equation IV.6.2 provides information on the 20 x 20 contact potentials operating over a 
given distance range r < RC.  On the other hand, it is usually useful to consider the 
distance-dependence of the potentials.  Park and Levitt implemented an approximate 
distance-dependence in a way similar to that of Wallqvist and Ullner {Wallqvist & Ullner 
1994 ID:966}, which appears to aid in discrimating for native conformations {Park & 
Levitt 1996 ID: 1111}.  Likewise, Crippen & Maiorov who fit large numbers of parameters 
to structures used a smoothing over distance {Crippen & Maiorov 1994 ID: 1138}].  For a 
more rigorous examination of the distance dependence, one can resort to radial distribution 
functions g(r), also called pair correlation functions {Hansen & McDonalds 2000 ID: 
1143}{Ben-Naim 1992 ID: 1084}. 
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______________________________________________________________________________________ 
 
Table IV.6.1.  Coordination data for residues in globular proteins (RC = 6.5 Å) 
 
Residue type(a)  VX

A (c)      qA
b (c)     <qA> (d)   <qA

X>  (e) Interaction 
                          site(e) 
 GLY   133.1 1.75 6.284 2.88        Cα   
 ALA   136.5 1.46 6.334 3.57  Cβ   
 SER   132.9 1.33 6.582 2.71  Oγ  
 CYS   133.9       1.15 6.646 3.67  Sγ  
 THR   133.6 1.19 6.486 2.88  Oγ 
 ASP   134.7 1.00 6.487 2.42  Oγ1 ,Oγ2   
 PRO   140.6 1.45 5.858 2.60  Cβ,Cγ,Cδ 
 ASN   137.1 0.90 6.574 2.57  Oγ1 ,Nδ2    
 VAL  140.7 1.07 6.155 4.52  Cγ1 ,Cγ2    
 GLU  142.4 0.72 6.235 2.35  Oε1 ,Oε2   
 GLN  136.2 0.74 6.469 2.71  Oε1 ,Nε3    
 HIS   142.1 0.73 6.241 3.43  Cγ,Nδ1,Cδ2,Cε1,Nε2 
 LEU   144.1 0.74 6.087 5.01  Cγ1,Cγ2  
 ILE   141.2 0.92 6.042 4.84  Cδ1   
 MET  146.9 0.59 6.137 4.75  Sδ   
 LYS   138.1 0.54 6.569 1.92  Nζ  
 ARG  140.8 0.35 6.318 2.90  Nε,NH1,NH2 
 PHE   147.0 0.56 5.870 4.99  aromatic C’s 
 TYR   143.3 0.54 6.037 4.11  aromatic C’s, OH 
 TRP   144.7 0.45 5.793 4.65  all aromatic atoms  
 
 X   138.5 1.01 6.281  
 0   139.6 0.0 7.161 
______________________________________________________________________________________ 
 
(a)  X stands for an average residue, and 0 for effective solvent molecule, (b)The volumes V, except for ARG, 
have been taken from Table 2 of {Chothia & Janin 1975 ID: 1144}, and V for ARG from Table 4 of {Chothia 
& Janin 1975 ID: 1145};  (c) from {Miyazawa & Jernigan 1985 ID: 1010} (d) from {Miyazawa & Jernigan 
1996 ID: 174}) (e) side chain representation in {Bahar & Jernigan 1996 ID: 83} 
 
  
 
Radial distribution functions multiplied by mean densities represent the effective densities 
as a function of position with respect to an investigated central site (see Figures IV.6.3).  In 
a sense, they correct for the local fluctuations in densities in the neighborhood of a central 
site.   
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Figure IV.6.3.  Pair radial distribution functions as a function of density (left) and corresponding potentials of 
mean force (right).  Note that  g(r) = 0 at small separation due to the volume exclusion effect, reaches a 
maximum at the optimal (lowest energy) interaction distance, and approaches unity at long distances.  Labels 
in the figures refer to varying density parameters.  At low densities a single peak is observed, whereas with 
increasing density (moving towards the right) multiple peaks appear, indicative  of successive shells of 
coordination around the central molecule.  (from {Ben-Naim 1992 ID: 1084} Figures 5.6 and 5.8).  Note that 
the inter-residue potential of mean force exhibits two minima, conforming to the first and second coordination 
shells of residues in the dense environment of protein interiors. 
 
 
Radial distribution functions differ from directly counted frequencies, being normalized 
with respect to radial distance.  The actual observed number NAB(r±∆r) of neighbors of B 
type, located in a spherical shell of thickness ∆r centered about A type residues is 
normalized by dividing it by the volume of that shell, 4πr2∆r.  This type of normalization 
avoids overweighting of neighbors in distant, larger volume elements.  As r increases, g(r) 
approaches unity, or the product of the mole fractions of interacting species for ideal 
mixtures.  The associated potential of mean force {McQuarrie 1976 …}{Ben-Naim 1992 
ID: 1084} (or free energy) W(r) = - RT ln g(r) thus vanishes at large separations (Figure 
VI.6.3), following normalization for composition.  In globular proteins, g(r) approaches 
unity, and WAB(r) becomes negligibly small beyond ~ 13 Å.   
 
Distance-dependent residue-specific potentials of mean force have been derived for 
globular proteins using {Bahar & Jernigan 1997 ID: 81} 
 

∆WAB(r) = - RT ln [gAB(r) / gXX(r)]     (IV.6.6) 
 
where gAB(r) is the effective radial distribution 
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gAB(r) = <qA
X> <qB

X> NAB(r) (4πr2)-1 / ∫ NAB(r) (4πr2)-1 dr  (IV.6.7) 
 
and gXX(r) is its counterpart for all types of inter-residue contacts.  The normalization 
integral in the denominator is taken in the range 0 ≤ r ≤ 13 Å.  Multiplication by <qA

X>  
takes account of the differences in the coordination numbers of the individual residues.  
Integration of the radial distributions in the limits 0 ≤ r ≤ RC leads to potentials of mean 
force ∆WAB(RC) representative of the residue-specific contacts occurring in the range r ≤ 
RC as 
 

     ∆WAB(RC) = - RT ln [ ∫ gAB(r) dr / ∫ gXX(r) dr]  (IV.6.8)  
 

Radial distribution functions have proven to be useful in deriving empirical energies not 
only for inter-residue interactions in proteins, but also for protein-ligand interactions at the 
atomic level (Muegge & Martin, 1999).   
 

d.  Databank structures reveal significant differences in the coordination numbers 
and optimal interaction distances of hydrophobic and hydophilic residues 
 
While viewing the distributions of positions for residues it is interesting to note two  
differences in the behavior of hydrophobic (H) and hydrophilic (or polar (P)) residues.  As 
qA

X values in Table IV.6.1 also indicate, hydrophobic residues as a group usually have 
more neighbors than do hydrophilic ones, i.e., hydrophobic residues are more buried in 
globular proteins than are hydrophilic residues.  See Figure IV.6.4.  Furthermore there are 
significant differences in the behavior of the two categories of residues in terms of their 
typical interaction distances.  Hydrophilic residues usually have more specific interactions 
at closer approach than do hydrophobic ones.  Some examples are shown in Figure IV.6.5.  
The ordinates are the potentials of mean force, ∆WAB(r), extracted from databank structures 
{Jernigan & Bahar 1996 ID: 161}.  We see that the optimal interaction distance shifts from 
around 5 Å for H-H and H-P pairs (top) to approximately 3 Å in the case of P-P 
interactions between polar and charged groups (bottom).  Furthermore, the P-P interactions, 
although operating over a narrower distance range, exhibit sharper energy minima.  As is 
well known, hydrophilic pairs are the most specific in their interactions, in part because of 
the hydrogen bond forming potential of their polar groups.  
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Figure IV.6.4.  Distributions of the numbers of neighboring residues within 6.5 Å of the named residue.  The 
curves reflect the different circumstances found in globular proteins where hydrophobic residues are usually 
buried and hydrophilic ones are usually located more on the surface.  The mean value of the distributions 
yield the residue coordination numbers <qA

X>  plus bonded neighbors qA
b(RC) (Modified from {Miyazawa & 

Jernigan 1996 ID: 174}) 
 

Figure IV.6.5.  ∆WAB(r) for specific pairs of residues.  HΦ refers to the average behavior of the hydophobic 
residues Leu, Val, Ile, Phe and Met and ‘polar’ residues include Asn, Gln, Ser, Thr and His.  Note the change 
in the position and width of minima between parts (a) and (b).  (from {Jernigan & Bahar 1996 ID: 161}.)  
See Table IV.6.1, last column, for side chain atoms used for defining the residue interaction sites.   
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