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   II.  APPENDIX 
 
 
II.A1. Conformations.  Models and Definitions 
 
a.  Sets of coordinates for backbone conformations 
 
Let us consider a macromolecule composed of n structural units along the backbone.  
These units may be atoms or unified groups of atoms (*).  The simplest set of coordinates 
for defining the instantaneous configuration of the molecule is the set of position vectors 
{R1, R2, R3, ..., Rn-1, Rn} with respect to a laboratory-fixed frame OXYZ, as shown in 
Figure II.A1.1.  In statistical treatments of chain conformational mechanics, a chain-
embedded frame O1X1Y1Z1 affixed to the first bond is generally used as a reference.  The 
position of the ith unit with respect to the frame O1X1Y1Z1 is represented by the position 
vector ri = (xi   yi   zi)T, where T denotes the transpose.  This choice of reference frame 
removes the three translational degrees of freedom of the molecule.  Furthermore, the 
overall rotational degrees of freedom can be eliminated upon fixing the absolute 
orientation of the molecule.  For example, to this aim, the first bond of the chain can be 
chosen along the X1 axis, and the third can be constrained to lie in the plane spanned by 
the axes X1 and Y1.  Clearly, r1 = 0, and y2 = z2 = z3 = 0 in this representation.  The 
remaining 3n - 6 coordinates {x2, x3, y3, x4, y4, z4, ….xn, yn, zn} define the internal 
configuration of the macromolecule. 
 
The position of the ith unit with respect to OXYZ can be expressed in terms of the 
internal position vectors ri as 

  
Ri = R1 + T1 ri = R1 + T1 l kΣ

k = 2

i

    (II.A1.1) 
 
where li  =  ri  - ri-1 is the bond vector connecting the units i-1 and i, pointing from i-1 to 
i (Figure II.A1.2), and T1 is the transformation matrix for the passage from the frame 
O1X1Y1Z1 into the laboratory-fixed frame OXYZ.  We note that in this notation the first 
bond of the chain is denoted as l2.  See § II.A2 for the definition of transformation 
matrices in general, and for the conventional bond-based frames and their associated 
transformation matrices used in polymer statistics.  
 
 (*) ------------------------------------------Footnote-------------------------------------------- 
In most theoretical treatments the hydrogen atoms are assumed to be included implicitly together with the 
heavy atoms to which they are attached.  Furthermore, groups of atoms such as the carbonyl C and O, or 
members of a ring, are regarded as forming a unified group rigidly moving during conformational motions.  
The backbone of the macromolecule can thus include all atoms other than bulky side chains.  We therefore 
choose to refer to structural units, rather than atoms, for describing the main chain.  It should be 
understood that this term includes isolated or unified atoms.  
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Figure II.A1.1.  Schematic representation of a chain of n backbone units.  Bonds are labeled from 2 to n, 
and structural units from 1 to n.  The location of the ith unit with respect to the laboratory-fixed frame 
OXYZ is indicated by the position vector Ri.  R1 and R3 are explicitly shown.  
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Figure II.A1.2.  Schematic representation of a portion of the main chain of a macromolecule.  li is the 
bond vector between units i-1 and i, as shown.  ϕi denotes the torsional angle about bond i. 

 



 82

 
The set of coordinates {R1, l2, l3, .... ln-1, ln} can be conveniently used, instead of {R1, R2, 
R3, .... Rn-1, Rn}, for describing the three-dimensional structure of the chain.  
Alternatively, the set of 3n variables consisting of 
 

(i) the position vector R1 of the first unit with respect to OXYZ, 
(ii) three Euler angles describing the absolute orientation of the protein in space, 
(iii) n-1 bond lengths li, i varying in the range 2 ≤  i≤  n , 
(iv) n-2 supplemental bond angles θi between bonds li and li+1,  2 ≤  i ≤ n-1 (Figure 
II.A1.2),  
(v) n-3 rotational or dihedral angles ϕi describing the torsional rotations of all 
internal bonds (3 ≤ i ≤ n-1) about their own axes, as illustrated in Figure II.A1.3, 

 
may be adopted for describing the conformation of a protein backbone.  This choice of 
generalized coordinates offers the advantage of separating the internal and external 
degrees of freedom.  Items (i) and (ii) represent the external state.  They refer to the rigid-
body translation and rotation of the molecule, respectively.  The remaining 3n -6 
variables in items (iii)-(v) describe the internal conformational state.  

 
In analytical treatments, it will often be necessary to switch between rectilinear or 
rectangular coordinates {x2, x3, y3, ...., xn, yn, zn} and curvilinear or polar coordinates {l2, 
l3, ..., ln, θ2, θ3, ....θ n-1, ϕ3, ϕ4, ..., ϕn-1} or vice versa.  See Appendix II.A3 for the set of 
equations commonly used for the passage between these two sets of coordinates.  
Depending upon the investigated property, one or the other set may be advantageously 
adopted for computation.  For instance, the former readily yields the interatomic distances.  
These are needed when calculating non-bonded intramolecular interactions in MD 
simulations.  Rectangular coordinates are also used for finding the position of the center of 
mass from the summation over all units 1 ≤ i ≤ n,  
 
    RG = Σi miRi / Σi mi   (II.A1.2) 
 
and the radius of gyration S from 
 
    S2 = Σi mi | Ri - RG|2 / Σi mi   (II.A1.3) 
 
where mi denotes the mass of the ith structural unit. The vector Ri - RG represents the 
position of the ith unit with respect to the center of mass, and the vertical bars designate the 
magnitude of the enclosed vector.  S2 can conveniently be expressed in terms of internal 
distances along as{Flory  1969 ID: 460} 
 
    S2 = Σ  (Rj-Ri)2 /n2   (II.A1.4) 
                 1≤ i<j≤n 
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The polar variables, on the other hand, are used in the harmonic potentials governing bond 
stretching and bending motions, in serial expansions describing the bond rotational energy 
distributions as a function of torsion angles, or in simulations done by holding the bond 
lengths and bond angles fixed.  
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Figure II.A1.3.   Spatial representation of the torsional mobility around the bond i+1.  The torsional angle 
ϕi+1 of bond i+1  determines the position of the atom Ci+2 relative to Ci-1.  C'i+2 and C"i+2 represent 
the locations of the atom i+2, when ϕi assumes the respective values 180° and 0°, characteristic of the 
trans and cis rotameric states.  (see Fig II.A1.5).   
 
 
b.  Torsional angles of backbone bonds are a major determinant of macromolecular 
conformation 
 
The internal conformation, rather than the absolute location and orientation in space, is of 
interest in most applications, and the set of internal variable {l2, l3, ..., ln,  θ2, θ3, ....θn-
1, ϕ3, ϕ4, ...ϕn} is commonly resorted to.  For fixed bond lengths and bond angles, which 
may be regarded as a reasonable first approximation for treating chain statistics, 
specification of the ensemble of rotational angles {ϕ3, ϕ4, ...., ϕn-1} is sufficient for 
defining a given conformation.  This approximation relies on the fact that the rotational 
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angles are the softest degrees of freedom, usually responsible for conformational changes 
occurring in macromolecules, while bond angles, and bond lengths in particular, are more 
severely constrained in their fluctuations about mean values.  
 
Not all torsional angles are equally probable, in general.  Some torsional angles, referred 
to as rotational isomeric states (RIS) {Flory  1969 ID: 460}{Mattice & Suter 1994 ID: 
493}, are more frequent than others, these being favored by the intrinsic torsional 
potentials of the particular bonds.  For example, tetrahedral bonds show three equally 
probable isomeric states, separated each by ∆ϕ = 120°.  Their intrinsic torsional potential 
is shown in Figure II.A1.4 (dashed curve).  In polyethylene chains, -(CH2)n-,  two of 
these states, called the gauche+ and gauche- isomers, become less probable than the 
third, trans isomer (Figure II.A1.5).  This is due to the constraints on rotational states 
imposed by the interactions between bonded near neighbors, for example those between 
carbon atoms i-2 and i+1 when rotating the ith bond.  The steric clash between the same 
pair of atoms is also responsible for the large hindrances in the cis isomer.  This 
distribution over the dihedral angle is illustrated by the solid curve in Figure II.A1.4.  
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Figure II.A1.4.  Rotational energy as a function of dihedral angle for a threefold symmetric torsional 
potential (dashed curve)  and a three-state potential with  a preference for the trans isomer (ϕ = 180°) 
over the gauche isomers (60° and 300°) (solid curve),  and the cis (0°) state being most unfavorable.   
See Figure  II.A1.5. 
 

 



 85

 
 

Figure II.A1.5.  (next page)  Rotational isomeric states for the central bond in a segment of four 
backbone atoms.  Large blue spheres show backbone atoms.  They are indexed from 1 to 4.  The small 
spheres show side groups; they are labeled by the indices of the backbone atoms to which they are 
affixed (with a prime sign).  Side groups on atoms 1 and 4 are omitted for clarity.  Four isomeric 
conformations, characterized by the rotational (or dihedral) angle ϕ3 of the bond connecting atoms 2 
and 3, are illustrated.  Two views are shown for each conformation: the Newmann diagrams (a)-(d) 
where atom 3 is eclipsed by atom 2, and the side views (a’)-(d’) where the first two bonds lie in the 
plane of the both sides lie on a common plane.  Atoms 1 and 4 are located at the largest separation 
permitted by bond angles and bond lengths; (b) gauche+ (g+) .  The middle bond undergoes right-
handed  rotation of 120° with respect to the trans state, and becomes ϕ3 = 300° (or -60° due to 
periodicity); (c) gauche-(g-).  The middle bond is rotated by -120° with respect to the trans state, and 
becomes ϕ3 = 60°; (d) cis (c), with ϕ2 = 0°.  The three successive bonds are planar, as in the trans state, 
but atoms 1 and 4 are at their closest separation.     
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II.A2.  Bond-based coordinates for describing polymeric structures 
 
In the conformational analysis of macromolecules, it proves convenient to define bond-
based frames, or local frames embedded in the chain.  These move with the backbone as 
the latter undergoes conformational changes.  Vectorial quantities rigidly affixed in these 
frames are first evaluated in their local bond-based frames, and then transformed by 
standard matrix multiplication methods into their representation in the laboratory-fixed 
frame OXYZ.  Figure II.A2.1 illustrates the conventional definition for the bond-based 
frame OXi+1Yi+Zi+1 appended to the ith bond along the chain. 
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Figure II.A2.1.  Schematic representation of a chain segment of four bonds.  Atomic serial 
indices are indicated in parentheses.  The ith bond connects atoms i-1 and i along the main 
chain, and its torsion angle is denoted as ϕi.  θi is the supplemental bond angle defined by bonds 
i and i+1.  The Xi+1 and Yi+1 axes of the bond-based coordinate system Xi+1Yi+1 Zi+1 appended 
to the bond i+1 are shown.  Yi+1 lies in the plane defined by bonds i and i+1, and makes an 
acute angle with Xi.  The Zi+1 axis, not shown, completes a right-handed coordinate system.  
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II.A3.  Transformations between Cartesian and generalized coordinates 
 
The transformation from the Cartesian coordinates {x2, x3, y3, ... , x n, yn, zn} into the 
generalized coordinates {l2, l3, ..., ln, θ 2, θ 3, ....θn-1, ϕ3, ϕ4, ..., ϕn} is achieved by invoking 
the relationships 
 
          lk = |rk - rk-1|       (II.A3.1) 

θk =θk(rk-1, rk , rk+1) = cos-1 lk • lk+1
 lk lk+1

   (II.A3.2) 
        ϕk = ϕk (rk-2, rk-1, rk, rk+1) =   sign[sin(ϕk)] cos-1(nk • nk-1)  (II.A3.3) 
 
where the symbols x and • refer to vector and scalar products, respectively, nk is the unit 
normal vector, perpendicular to the plane spanned by lk and lk+1, found from  
 
  nk  = [(lk x lk+1) / | lk x lk+1|]     (II.A3.4) 
 
and  sign[sin(ϕk)] represents the sign (+ or -) of sin(ϕk) =  (nk x nk-1)/| nk| |nk-1 |.  We note 
that the inverse cosines in equations II.A3.2 and II.A3.3 yield angles in the range [0°, 180°].  
The bond angles vary in the range [0°, 180°], and can be directly found from eq II.A3.2.  
The torsional angles, on the other hand, vary in the range [-180°, 180°], and one needs to 
choose between two values, either positive or negative rotations with respect to the trans 
state (180°), both having the same cosine value.  The term sign[sin(ϕk)] selects for the 
appropriate torsional angle.  
 
Equations II.A3.1-4 are useful for calculating the bond angles θk and rotational angles ϕk in 
structures whose rectangular coordinates are available.  A typical application is the 
evaluation of the dihedral angle distributions for protein databank structures.  The passage 
from polar coordinates to the Cartesian ones, on the other hand, is usually performed with 
the help of the transformation matrices.  The matrix Ti(θi, ϕi) transforms the vectorial 
quantities of the bond-based frame i+1 into their representation in the ith frame.  For 
example, the bond connecting atoms i and i+1 is expressed as li+1* = (li+1  0   0)T in the 
local frame i+1,  the asterisk indicating that the vector refers to the local frame i+1.  The 
same vector’s representation in the preceding bond-based frame is Ti(θi, ϕi) li+1*.  
Successive applications of such transformations leads, for the vector between unit 1 and i, 
to  
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ri = l 2
* + T2(θ2, ϕ2) l 3

* + T2(θ2, ϕ2)T3(θ3, ϕ3) l 4
* + ....+ Tk(θk, ϕk)Π

k=2

i-1
l i
* (II.A3.5) 

 
where ϕ2 is set equal to 180°, and the transformation matrix Ti (θi, ϕi) is defined as 

 

T i(θ i, ϕi) =
cos θi sin θi 0

-sinθ i cos ϕ  i   cos θi cos ϕ i -sin ϕ i

-sin θ isin ϕ  i   cos θ i sinϕi cos ϕ i
 (II.A3.6) 

 
A typical application of equations (II.A3.5) and (II.A3.6) is the computer generation of 
chains whose dihedral angles, bond lengths and bond angles are known.  MC simulations 
using the generalized coordinates is a typical application.  See Chapter VII.       
 
 
II.A4.  Virtual bond representation of inter-residue coordination angles 
 
Two spherical angles have been defined in order to describe the coordination geometry of 
residues (see Figure II.3.8) at a coarse-grained level {Bahar & Jernigan 1996 ID: 83}. In 
this coarse-grained description, each residue (i) is represented by two sites, its α-carbon 
(Cα

i), and a sidechain site Si. The site Si is located either at the centroid of sidechain, at 
the functional/charged group. The position of a neighbor Sj with respect to Si is defined 
by two coordination angles, ϑij and ϕij, referred to as the polar and azimuthal angles, 
respectively. See Figure II.A4.1.  
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Figure II.A4.1.  Coarse-grained representation of the angular coordination between side chain Si and Sj.  
rij, (dashed line with an arrow at the end) is the vector pointing from Si to Sj.  The polar angle ϑij is the 
angle between rij and the extension of side chain bond vector lis.  The azimuthal angle ϕij is the torsional 
angle about bond lis.  It is defined as 0° for the trans (t) position with respect to atoms Cαi-1, Cαi and  Si. 
Other dihedral angle positions are indicated as s+ (skew+. 60°), g+ (120°), c (cis, 180°), g- (gauche-, 240°) 
and s- (skew-, 300°); whereas polar angles are classified as front (f), lateral (l) and back(b) position.   The 
geometric variables rij, ϑij and ϕij define the coordination of Si by Sj.  (from {Bahar & Jernigan 1996 ID: 
83}) 
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