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2.3.5. Classical kinetic modeling of protein folding/unfolding  
 
 In a strict sense, folding/unfolding kinetics should be analyzed by statistical, 
or stochastic (time-dependent statistical) methods and models. These are molecular 
models. Their methodologies and applications will be presented in § 3. Yet, a common 
approach has been to analyze and interpret the observed behavior using classical 
chemical kinetics methodologies. These provide us with conceptually simple kinetic 
schemes and rate parameters, which could be useful from engineering points of view.  
A brief summary of simple kinetic models, and corresponding integrated rate laws 
will be presented here, with reference to proteins whose folding/unfolding kinetics 
obey one or another scheme. 
 
2.3.5.1. Two-state transition 
 
 The simplest type of transition between states U and N is a two-state process, 
given by the scheme 

    

U
kf

ku

N     (2.V) 

  

The differential rate expressions holding in this case are 
 
    d[U]/dt = - kf [U] + ku [N] 
           (2.3.10) 
    d[N]/dt = + kf [U] - ku [N] 
     
where [U] and [I] are the instantaneous (time-dependent) concentrations of the 
unfolded and folded conformations, respectively, and kf and ku are the folding and 
unfolding rate constants. Let the initial concentrations be [U]0 and  [N]0. In folding 
experiments, we take [N]0 = 0, and the instantaneous concentration [N] is given by 
 
    [N] = [U]0 - [U]     (2.3.11) 
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such that the first expression in equation (2.3.10) reduces to a non homogeneous, first 
order differential equation  
 
   d[U]/dt = - (kf + ku) [U] + ku [U]0    (2.3.12) 
 
the solution of which is 
 

   
[U] / [U]0 =  ku

kf + ku
  + kf

kf + ku
  exp { -(kf + ku)t} 

 (2.3.13) 
 
A few points deserve attention in this result. First, [U] decreases to an equilibrium 
value of  [U]� = [U]0 ku / (kf + ku) at long times. The fractional concentration of the 
two states in equilibrium are given by 
 
   fU + [U]/([U]+[N[) = ku / (kf + ku)  

   fN + [N]/([U]+[N[) = kf / (kf + ku)   (2.3.14) 
 
Second, this decrease (or the increase in [N]) is single exponential with an apparent 
rate constant  
 
   kapp = kf + ku      (2.3.15) 
 
Finally, the equilibrium (t ––> �) concentration of folded conformations obeys the 
detailed balance equation 
 
   [U]� kf =  [N]� ku      (2.3.16) 
 
The equilibrium concentration also define the equilibrium constant for the folding 
reaction 
 

   
KUN =  

[N]∞
[U]∞

  =  kf
 ku

  
     (2.3.17) 

    
The equilibrium constant is related to the free energy of unfolding by the equation 
 
   ∆GUN = - RT ln KUN      (2.3.18) 
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Several single domain proteins obey a two-state transition. The folding/unfolding 
kinetics of these proteins on a macroscopic scale is therefore governed by the above set 
of equations.   
 
2.3.5.2. Sequential transition from U to N 
 
 The transition from U to N has been shown in numerous examples above to 
proceed through the formation of one or more intermediates. The corresponding 
kinetic schemes can be written as 2.II or 2.III. Let us consider here the simpler case of a 
single intermediate. Let kXY designate the rate constant for the passage from state X to 
state Y. Using this notation, scheme 2.II can be rewritten as 
 

   

kUI

kIU

kIN

kNI
    (2.II) 

 
The set of equations for the differential change in concentration become in these case  
 

  d[U]/dt = - kUI [U] + kIU [I]     (2.3.19a) 

  d[I]/dt = + kUI [U] - kIU [I] - kIN [I] + kNI [N]   (2.3.19b)

  d[N]/dt = + kIN[I] - kNI [N]     (2.3.19c) 
 
These can be conveniently written in a matrix equation formalism as 
 

  

d[U]/dt
d[I]/dt

d[N]/dt
 = 

-kUI kIU 0
 kUI -kIU-kIN  kNI

0 kIN -kNI

  
[U]
[I]

[N]

 (2.3.20) 
   
In concise notation, equation 2.3.20 reads 
 
  dX(t)/dt = A X(t)       (2.3.21) 
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where X(t) is the vector of the instantaneous concentrations, and A is the matrix of rate 
constants, shortly referred to as rate matrix, of order three in the present case.  In § 3.6, 
a matrix equation similar in form, referred to as a master equation, will be adopted for 
describing the stochastics of the transitions in the space of multiple conformations.  
Therein, the concentrations are simply replaced by the instantaneous probabilities of 
the different conformations.  
 
 The set of coupled differential equations admit a solution that can be found 
using analytical methods. However, in this case, and more complex cases where the 
number of intermediates, and consequently the size of the rate matrix A is larger, the 
solution of the set of differential equation (2.3.19) is conveniently found by matrix 
algebra methods, using the similarity transformation 
 
  A = B Λ B-1         (2.3.22) 
 
Here B is the matrix of eigenvectors of Α, and Λ is the diagonal matrix of eigenvalues. 
In the above particular case the matrix A admits two nonzero eigenvalues, λ1 and λ2, 
each of which represent the negative of the rate constants apparent in a biexponential 
time dependence. In other words, the instantaneous concentrations are controlled by 
the double exponential functions, following the formal solution  
 
  X(t) = B exp {Λt} B-1 X(0)      (2.3.23) 
  
of equation  2.3.21. Equation 2.3.23 may be rewritten in explicit notation for each state i 
(Xi = [U], [I ]or [N]) as 
 

  Xi(t) = Σk Σj Bik exp { λkt}  B-1kj Xj(0)    (2.3.24) 
 
where the subscript denote the particular elements of the matrices, or vectors, and the 
summations are carried over all (in the present case three) elements.   
 
 Equation 2.3.24 is similar in form to the multiexponential form generally 
postulated for describing experimental data. See eq 2.3.2. The empirical rate constants 
determined in these experiments represent the eigenvalues (negative) of Α, and the 
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preexponential (or amplitude) factors are functions of the eigenvectors and initial 

concentrations of the form  Σj Bik B-1kj Xj(0) for the kth exponential term.  
 
 
2.3.5.3. Steady state approximation for the intermediate 
 
 Let us explore the result of adopting a steady-state approximation for the 
concentration of intermediate. In this approximation, the rate of change of the 
concentration of intermediate is zero (d[I]/dt = 0). Using eq (2.3.19b), we obtain 
 
  [I] =  (kUI [U] + kNI [N])/(kIU + kIN)     (2.3.25) 
 
for the constant concentration of intermediates. The rate of unfolding may then be 
expressed as 
   

  
d[U]/dt = - kUI kIN

kIU + kIN
 [U] +  kIU kNI

kIU + kIN
 [N]

   (2.3.26) 
 
In other words, the effective rate constants for the unfolding and folding processes 
conforming with the two-state scheme 2.V, are 
 

    

ku,eff  =  kUI kIN
kIU + kIN
 

  kf,eff = kIU kNI
kIU + kIN

 
     (2.3.27) 

 
And the solution of the general scheme 2.II becomes identical in form to eq 2.3.13, with 
the only exception that ku,eff and kf,eff replace ku and kf, respectively.  
 
2.3.5.4. Sequential transition with a pre-equilibrium between initial state and 
intermediate state 
 
 Let us consider a special case of the kinetic scheme 2.II: the transition between 
states U and I is considerably faster than that between states I and N. Furthermore we 



 6

assume that there is practically no reverse transition from state N to state I. Under 
these circumstances, a pre-equilibrium is achieved between states U and I, prior to the 
rate controlling step I––>N.  This type of kinetics, represented by the scheme 
 

  

kUI

kIU

kIN

    (2.II') 

 
has been observed to be effective in a large number of proteing folding experiments. 
In these studies, the U <––> I step is usually reported to be too fast to be probed by 
stopped-flow methods and only the corresponding amplitude factor can be measured 
[Baldwin, 1996 #199]. See § 2.3.3 and 2.3.4.  
 
 A similar scheme (2.IV), though in opposite direction, has proved useful in 
interpreting unfolding experiments probed by HD exchange/2-dimensional NMR. In 
fact, a pre-equilibrium is quite a general phenomenon. It arises whenever the rate of 
formation of the intermediate and its decay back into reactants are much faster than its 
rate of formation of the products. The change may be in the folding or unfolding 
direction; a passage through a fast forming (on-pathway) intermediate is a common 
observation. The kinetic equations presented below will refer to the scheme (2.II'). Yet, 
it should be recalled that the same derivations and/or equalities are valid -with the 
proper substitution of rate constants- for the case of a pre-equilibrium established 
between states N and I, preceding complete unfolding. 
 
 The set of equations 2.3.19 again applies to scheme 2.II', with the substitution 
kNI = 0.  However, the existence of a pre-equilibrium between U and I significantly 
simplifies the solution, in that the rate of formation of the native state can be simply 
expressed as 
 
  d[N]/dt =  kIN [I]       (2.3.28)   
 
Also, taking advantage of the fact that the concentration of the intermediate reaches a 
pre-equilibrium [I] = KUI [U] before conversion to [N], the same equation may be 
rewritten as 
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  d[N]/dt  =  kIN KUI  [U]  = (kIN kUI /kIU) [U]   (2.3.29) 
 
 Usually, KUI  is readily found from the measurements of [U] and [I] at the start of 
folding experiments, -for example, from the extent of decay in fluorescence or CD at 
the burst stage of folding.  In eq 2.3.29, we assume that the rate of conversion of [I] to 
[N] is too slow to affect the maintenance of the pre-equilibrium. Alternatively, one 
may take account of the possibility of I leaking away as it forms U, but being rapidly 
restored by the fast passages U <––> I. In the case, the net rate of change of I is equal to 
zero, i.e. 
 
  d[I]/dt = + kUI [U] - kIU [I] - kIN [I]  = 0    (2.3.30) 
or  
  [I] = + kUI [U] /(kIU + kIN)      (2.3.31) 
 
Equation 2.3.30 represents the steady state approximation for the intermediate I. 
Substitution of eq 2.3.31 into eq 2.3.28 yields 
 
  d[N]/dt =   kIN kUI [U] /(kIU + kIN)      (2.3.31) 
 
which reduces to eq 2.3.29, provided that the rate of formation of N is much smaller 
than the conversion of the intermediate I back to the unfolded state, kIN << kIU. In 
either case, the rate of conversion from the unfolded to the folded state appears as a 
first order reaction with rate proportional to kIN.  Using the fractional population 
 
  fI = [I]/ ([U]+[I])        (2.3.32) 
 
of I amongst the non native conformations and the conservation equation 
 
  [U]0 = [U] + [I] + [N]      (2.3.33) 
 
the rate law 2.3.28 can be rewritten as a non homogeneous first order differential 
equation of the form 
 
  d[N]/dt =   kIN fI ([U]0 - [N])       (2.3.34) 
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The apparent folding rate constant is therefore proportional to kIN and fI  
 
  kf = kIN fI = kIN kUI /(kIU + kIU)     (2.3.35)  
 
2.3.5.5. Off-pathway intermediate formation 
    
The intermediate formed during folding has been pointed out in a number of 
experiments to be off-pathway, and slowing down to actual rate of folding. The kinetic 
scheme  

    

kUN

k NU
kIU

kUI
    (2.I)

 
holds in this case. The above scheme can again be solved by the matrix formalism 
described in eqs 2.3.20-24. For simplicity let us concentrate here on the simplified case 
of a pre-equilibrium between states U and I, established much faster than the 
conversion U ––> N. Also, we neglect the back transition from state N to U. These 
simplifications, expressed as kNU = 0, and kUN << kIU, kUI, yield the scheme 
 

       

k UN

kIU
kUI     (2.I')

 
 In this case, the rate of formation of the folded state N is 
 
   d[N]/dt =  kUN [U]      (2.3.36)   
 
Using eqs 2.3.32 and 2.3.33 which hold irrespective of the kinetic scheme, the above 
equation is rewritten as 
 
   d[N]/dt =   kUN (1 - fI) ([U]0 - [N])     (2.3.37) 
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This is a first order nonhomogeneous differential rate equation, in terms of [N], the 
solution of which is a single exponential rate of formation of [N], with apparent rate 
constant of 
 
   kf = kUN (1-fI)      (2.3.38) 
 
This result deserves special attention. Here, we see that the rate of folding decreases 
with the extent of formation of the intermediate; whereas eq 2.3.35 indicates the 
opposite trend, i.e. an increase in folding rate with the extent of intermediate 
formation. Therefore, accumulation of I has opposite effects in the two schemes (2.I') 
and 2.II'). It has a productive effect in scheme (2.II'), but a retarding effect in (2.I'). 
Typical examples in which a slowing down in folding rate has been observed relative 
to that expected in a two-state process, are the folding of barnase[Matouschek, 1990 
#146] and chymotrypsin inhibitor 2. [Jackson, 1991 #260; Otzen, 1994 #227]. The 
observed slower rates have been attributed to the accumulation of a partially folded 
intermediate. However, the present analysis demonstrates that the accumulation of 
intermediate slows down the effective folding rate only if the intermediate is off-
pathway. In the case of an on-pathway intermediate, the effect is, on the contrary, an 
increase in folding rate with the population of intermediate. A typical example 
illustrating the latter phenomenon is the folding of ubiquitin analyzed in detail by 
Roder and coworkers [Khorasanizadeh, 1996 #261].  
 
2.3.5.6. More complex kinetic schemes 
 
 The above examples illustrate how an apparent single-exponential transition does 
not necessarily mean the absence of intermediates, but may result from a pre-equilibrium 
achieved under certain conditions. Also, intermediates do not always act as kinetic 
traps, but can have opposite effects depending on their being off-pathway or on-
pathway. Finally, the apparent rates in empirical analyses of experimental data, 
obtained from curve fitting to multiexponential functions, do not represent the 
microscopic rate constants corresponding to individual steps, but a combination of 
these rate constants depending on the operating kinetic scheme. All these invite 
attention to the importance of postulating suitable kinetic schemes for interpreting 
experimental data. This is what kinetic modeling means, in the classical approach.  
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 With the advances in experimental techniques, it becomes apparent that the 
simplified kinetic schemes described above -though informative and useful from 
engineering point of view- are too simple. There is a need for more complexes 
schemes.  For example, a kinetic scheme consistent with the folding mechanism of 
cytochrome c displayed in Figure 2.3.32 is 
 

    

U I HW

IHH

N
 HM

k3k0

k0
k2

k1

 

 (2.VI) 

 
Here the slowest and fastest steps are found to have respective rate constants of k0-1 
≤ 100 µs, and k3 ≈ 0.03 s at room temperature. The on-pathway passage U ––> IHW –
–> NHM is therefore controlled by the slower step IHW ––> N. The misligated bis-
histidine intermediate IHH, on the other hand, cannot be converted to native state, 
unless a ligand exchange with rate constant k1 occurs.  k1 and k2 are reported to be 
about one order of magnitude smaller than k3, resulting in the appearance of a 
much slower folding rate for those species trapped in the misligated form [Yeh, 
1997 #259]. The appearance of discontinuous kinetic phases, and the strong 
sensitivity to ambient conditions is pointed out to cause the overall folding kinetics 
of cyt c to be extremely complex [Yeh, 1997 #259]. Another example is the urea 
induced unfolding of barstar [Zaidi, 1997 #262], which exhibits at least two 
intermediates, and two distinct pathways, each involving a different transition state. 
The corresponding kinetic scheme can be written as 
 

1
I U2  

 
These complex kinetic schemes suggest that probabilistic or microscopic methods are 
needed, in conformity with the energy landscape view of folding/unfolding 
dynamics.  



 11

 
 
 

    
 

Figure 2.3.32. Schematic diagram of the folding pathway of cyt c. HH and HW represent the 
conformations in which the haem group is ligated by two histidines (His 18 and His33/His26), or 
by one histidine (His18) and a water (W) molecule, respectively. In the nascent phase there is an 
overall collapse in molecular size. The HW conformation is easily changed into the native 
conformation (HM for native ligands His18 and Met80) during the ligand exchange phase; 
whereas the HH conformers (amounting to approximately 40% of the partially compact 
structures formed at the end of the nascent phase) act as kinetic traps slowing down the 
completion of the transition to native state. (Figure 9 in[Takahashi, 1997 #258])   
 
 

 
2.3.6.  Microscopic modeling of folding kinetics 
 
 
Deeper insights about protein folding kinetics come from microscopic models: 

statistical mechanical computer simulations{Miller & Dill 1995 6 /id}{Sali, 

Shakhnovich, et al. 1994 7 /id}{Dinner, Sali, et al. 2000 8 /id}{Pande & Rokhsar 1999 

9 /id}{Li, Mirny, et al. 2000 10 /id}.  Langevin dynamics of continuum models with 

different friction coefficients{Veitshans, Klimov, et al. 1997 11 /id}{Klimov & 

Thirumalai 2000 12 /id}{Thirumalai & Klimov 1999 48 /id} and molecular dynamics 

(MD) simulations of unfolding{Daggett, Li, et al. 1996 13 /id}{Lazaridis & Karplus 



 12

1997 14 /id}{Pande, Grosberg, et al. 1998 15 /id}{Alonso & Daggett 2000 16 /id} or 

refolding starting from transition states{Pande & Rokhsar 1999 17 /id}.   

 

An exact analysis of folding kinetics cannot be carried due to the astronomically 

large number of accessible conformations. However, in order to gain an 

understanding of the microscopic events underlying the observed kinetic behavior, 

it is possible to perform computations with simple models. An example is the 

folding of 2-dimensional lattice chains using a Go model for internal interactions. In 

the Go model, an attractive potential ε is assigned to each native contact. All other 

contacts have zero interaction energy.  To mimic the weakening of hydrophobic 

interactions by denaturants or temperature, one can vary the ratio ε/kT.  High 

temperatures denature the model proteins, while low temperatures stabilize the 

folded state, following Boltzmann’s law.  Folding is initiated by starting with an 

ensemble in which all conformations are equally probable (infinite temperature 

limit) and assuming the ambient temperature to be lowered to room temperature at t 

= 0. The stochastic process of passage from denatured to native state (or an ensemble 

of configurations in which the native is by far the most stable state) is observed 

provided that the energy of the native state is significantly lower than that of all 

other conformations.  See Ozkan et al. (2001) for more details. 

 

A complete set (N =802,075 conformations) of all self-avoiding 16-mers on a square lattice were thus 
generated (Ozkan et al., 2001) to observe the microscopic evolution of all conformations using a 
master equation formalism.. Equations 2.3.21-24 are valid with the redefinition of variables: P(t) is the 
N-dimensional vector of the instantaneous probabilities of the conformations, and A is the N x N 
transition (or rate) matrix describing the rate constants of the transitions between these conformations. 
By definition, the ijth off-diagonal element of A is the rate constant kij for the passage from 
conformation j to conformation i. From the principle of detailed balance, kij Pj° = kji Pi°, where Pi° is 
the equilibrium probability of the ith conformation.  The ith diagonal element (kii) of A, on the other 
hand, represents the overall rate of escape from conformation i. It is found from the negative sum of 
the off-diagonal elements in the same column, i.e. kii = - Σj kji (j≠i).  The time-dependent probability 
of occurrence of the ith conformation (i.e. the ith element of P(t)) is expressed in terms of the elements 
of B, Λ, B-1 and P(0) as 
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where C(i,t|j,0), denotes the conditional probability of (or transition probability to) conformation i at time 
t, given conformation j at t = 0.  The matrix C(t) fully describes the time dependence of NxN 
microscopic transitions. Results can be better understood if analyzed in terms of macroscopic states, 
each characterized by a given distribution of native contacts. The time-delayed joint probability of 
macroconformations A and B comprising NA and NB respective microscopic conformations is 
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There are several other studies in this area.  Master equation formalisms have been 
adopted by Scheraga and coworkers{Ye, Ripoll, et al. 1999 28 /id} for analyzing the 
folding of a subset of 50 conformations (local energy minima) generated for 
staphylococcal protein A, and by Eaton and coworkers, for modeling the formation of 
a β-hairpin {Munoz, Henry, et al. 1998 29 /id}{Munoz, Henry, et al. 1998 29 /id}. A 
well-defined folding pathway was reported{Pande & Rokhsar 1999 9 /id} for a 48-mer 
on a 3d-cubic lattice, as well as well-defined TS conformations having a common core 
structure.  Likewise, a preferred unfolding pathway was observed by Lazaridis and 
Karplus{Lazaridis & Karplus 1997 14 /id} in the multiple MD trajectories of 
chymotrypsin inhibitor 2 (CI2) – a classical example protein that obeys 2-state kinetics 
- suggesting that a preferred pathway can be compatible with a funnel-like average 
energy surface, as had been previously noted from lattice model simulations{Miller, 
Danko, et al. 1992 30 /id}.  
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2.3.6.1. Rate limiting or rate controlling steps. Apparent activated states 
   
 Transition states are ephemeral. These are free energy maxima between two 
equilibrium states, and the time period spent over such a maximum is too small to be 
captured by experimental means.  In the energy landscape representation, transition 
states would generally be in the form of a saddle, i.e. a maximum with respect to the 
transition pathway, and a minimum with respect to transverse directions. Using the 
energy landscape view, again, one might argue that no single transition state is 
observable because there are multiple, infinitely many pathways each of which 
involves the crossing of one or multiple energy barriers. Yet, although at initial stages 
of folding an infinitely large number of conformations (in the denatured state) are 
accessible and each may evolve through a distinct route, it is likely that some common 
dynamic features, preferred from probabilistic points of view, will occur in many 
pathways, as pointed out above. For example, given the appropriate sequence of 
residues, it is likely that some segments will undergo an autonomous folding. One or 

more α-helix formation is a common observation at the burst stage of folding; β-sheet formation, 

although less common, has also been observed at the earliest folding stage of some proteins (eg. RNase 

A [Udgaonkar, 1990 #150]). Alternately, at the latest stages, inasmuch as all conformations 
converge to a unique final state, the native structure, it is highly probably that the 
pathways will merge, -probably to a MG state close to the native state. The transition 
from MG to N may or may not be readily established. In fact, many proteins show 
such a tendency: a rapid conversion to an intermediate structure with MG 
characteristics, followed by a slow transition to the N state.  The last step is slower. 
This is therefore the rate controlling step.  
 
 Therefore in a sequential transition involving one or more probabilistically 
favorable intermediates -which can be represented by the kinetic schemes 2.II or 2.III 
given in § 2.3.1.1-, one step, the slowest, will be rate controlling. An activated state can 
therefore be defined, such as the conformation assumed at the energy maximum to be 
surmounted during this step. Evidently, a similar -conceptually simpler- definition 
evidently applies to the single step of an all-or-none transition.  
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 In the case of multiple parallel pathways, on the other hand, the fastest 
dominates the observed behavior. And if the fastest involves a series of elementary 
steps, the slowest amongst these control the apparent rate. Thus, for a hypothetical 
kinetic scheme from the unfolded to the folded state consisting of many parallel 
pathways each of which involves several steps, the point would be (i) to determine the 
pathway that involves the lowest energy barriers, and (ii) in this pathway to focus on 
the highest energy barrier step for an examination of the conformation assumed at the 
transition state. We may invoke here the concept of apparent transition state, since this 
is simply the most critical one amongst many that can be encountered during the 
folding process.  
 
 Theoretical studies attempting to delineate the most probable pathway are 
presented in § 3. Again, both classical approaches of reaction kinetics, and modern 
treatments based on statistical and stochastic models are used to this aim. An elegant 
modern approach is to use a master equation formalism to describe the stochastics of 
transitions in an ensemble of representative conformations obeying a kinetic scheme 
involving as many steps as computationally feasible.  This approach and its 
applications for investigating macromolecular dynamics will be presented in § 3.x.  
 
 In the next subsection we will present the experimental studies attempting to 
elucidate the transition state(s) in folding kinetics. An approach based on protein 
engineering concepts, proposed by Fersht and collaborators, will be presented. This 
approach is referred to as Φ-value analysis. The use of classical methodologies of 
chemical kinetics for interpreting kinetic data will be illustrated for a few examples.  
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2.3.6.2. Effect of point mutations on folding kinetics. Φ-value analysis. 
 
 Experiments show that it is, in principle, possible to map out the structures of 
the transition states, and the intermediates, by studying the folding kinetics of a series 
of mutants. In these studies, folding is initiated either by a T-jump (in the case of cold 
denatured proteins), or dilution of denaturant using stopped-flow mixers. A typical 
example for the former case is the folding of barstar [Nolting, 1995 #183], a peptide 
inhibitor of barnase; examples for the latter are the folding of chymotrypsin inhibitor 2 
(CI2) [Otzen, 1994 #227; Itzhaki, 1995 #228; Fersht, 1995 #229] and barnase 
[Matouschek, 1990 #146; Matouschek, 1992 #156].   
 
 

     
 
 
2.3.7. Conclusion: Utility of combining data from different techniques  
 
 In the present chapter, we tried to emphasize with several illustrations the 
need for, and utility of, jointly analyzing and interpreting the data from different 
experimental techniques. Furthermore, we stressed the importance of adopting a 
statistical viewpoint as a prerequisite for correct interpretation of the data. In 
principle, a kinetic scheme with infinitely many intermediates communicating via 
elementary steps is conceivable, and the observed behavior for a particular protein 
under particular folding or unfolding conditions will necessarily be a simplified 



 17

case of this most general statistical behavior. The fact that a two-state transition is 
observed under given conditions could simply mean that intermediates are not 
stable enough, or probable enough, to be visible along the transition, in the 
experimental time window. Yet, these probably do exist as local minima -though 
relatively shallow under the particular experimental conditions- on the free energy 
surface. Inasmuch as stability is directly controlled by the depth of free energy 
minimum, and for a given activated state the latter directly determines the height of 
the free energy barrier, observed kinetics cannot be abstracted from stability 
characteristics.  

 
 Plaxco and Dobson discussed how complementary methods can be 
combined to obtain information on the structural and mechanistic aspects of protein 
folding. There are numerous methods, including NMR, fluorescence, CD, SAXS, 
mass spectrometry, quasi-elastic light scattering. New developments in many of 
these techniques, together with improved methods for initiating refolding are now 
pushing measurements down to nonsecond time regime. These will be leading to a 
new and more detailed understanding of the protein folding process.  
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