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Sequence --------------> Structure
‘Protein folding problem’

Bioinformatics. Sequence alignments M
od

ell
ing

an
d s

im
ula

tio
ns

Function

Fundamental paradigm: Sequence encodes structure; structure encodes function



Structure  Function

To what degree is fold To what degree is fold 
associated with function?associated with function?

Structure  Dynamics Function



Is there a unique relation between fold and function?Is there a unique relation between fold and function?
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Hegyi & Gerstein, JMB 288: 147

Number of functions associated with a fold



Knowledge of sequence or structure does not 
permit us to

• Understand the mechanism of function
• Device methods of controlling/inhibiting function
• Predict the behavior in different forms, different environments
• Answer the questions ‘how’ or ‘why’!

Biological function is a dynamic process

Structure Dynamics Function



To understand the principles that underlie the To understand the principles that underlie the 
passagepassage

to function... 
from structure,

We need to examine the 
conformational dynamics.

Dynamics Function



State-of-the-art in computational/mathematical biology

-------- 25 Å ------

?
Subcellular/cellular computationsMolecular computations

● Limited to small systems (one 
macromolecule) or short times (~ ns)
● Dependent on force field
● Solvent effect – a problem

● Simple mass-action kinetics
● No spatial-structural realism
● Lack of data for model parameters



SupramolecularSupramolecular dynamicsdynamics

Wikoff, Hendrix and coworkers

Multiscale modeling – from full atomic to multimeric structures



Subcellular and cellular simulations

Monte Carlos simulations using 
MCell and DReaMM - Stiles and 
coworkers (PSC)

Dynamics systems - Mathematical modeling using ODEs



Progresses in molecular approaches:
Coarse-grained approaches for large complexes/assemblies

-------- 250 Å -------------- 25 Å ------

Example: EN models for modeling 
ribosomal machinery (Frank et al, 
2003; Rader et al., 2004)

http://www.ccbb.pitt.edu/bahar/162.pdf


Stuctures suggest mechanisms of function

A. Comparison of static structures available in the PDB for the same 
protein in different form has been widely used as an indirect method 
of inferring dynamics. 

Bahar et al. J. Mol. Biol. 285, 1023, 1999.

B. NMR structures provide information on 
fluctuation dynamics



Protein dynamicsProtein dynamics

Folding/unfolding dynamics Folding/unfolding dynamics 

Passage over one or more energy barriersPassage over one or more energy barriers
Transitions between infinitely many conformationsTransitions between infinitely many conformations

Fluctuations near the folded stateFluctuations near the folded state

Local conformational changesLocal conformational changes
Fluctuations near a globalFluctuations near a global minimum

B. Ozkan, K.A. Dill & I. Bahar, Protein Sci. 
11, 1958-1970, 2002

minimum



Several modes of motions in native stateSeveral modes of motions in native state

Hinge site



Macromolecular ConformationsMacromolecular Conformations
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Schematic representation of a chain of n backbone units.  
Bonds are labeled from 2 to n, and structural units from 
1 to n.  The location of the ith unit with respect to the 
laboratory-fixed frame OXYZ is indicated by the position 
vector Ri.  

Schematic representation of a portion of the main chain of a 
macromolecule.  li is the bond vector extending from unit  i-

1 to  i, as shown.  ϕi denotes the torsional angle about 
bond i.



How/why does a molecule move?How/why does a molecule move?

Among the 3NAmong the 3N--6 internal degrees of 6 internal degrees of 
freedom, freedom, bond rotationsbond rotations (i.e. changes (i.e. changes 
in dihedral angles) are the softest, and in dihedral angles) are the softest, and 
mainly responsible for the functional mainly responsible for the functional 
motionsmotions



Two types of bond rotational motionsTwo types of bond rotational motions

Fluctuations around isomeric statesFluctuations around isomeric states
Jumps between isomeric statesJumps between isomeric states

Most likely near native state



Definition of dihedral angles
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Rotational energy as a function of dihedral angle for a threefold 
symmetric torsional potential (dashed curve)  and a three-state 
potential with  a preference for the trans isomer (j = 180°) over the 
gauche isomers (60° and 300°) (solid curve),  and the cis (0°) state 
being most unfavorable.   Spatial representation of the torsional mobility around the bond i+1.  

The torsional angle ϕi+1 of bond i+1 determines the position of the 
atom Ci+2 relative to Ci-1.  C'i+2 and C"i+2 represent the positions of 
atom i+2, when ϕi+1 assumes the respective values 180° and 0°.



Rotational Isomeric States (Flory – Nobel 1974)



BondBond--based coordinate systemsbased coordinate systems

Transformation matrix between frames i+1 and i

Virtual bond representation of protein backbone



Homework 1: Passage between Cartesian Homework 1: Passage between Cartesian 
coordinates and generalized coordinatescoordinates and generalized coordinates

Take a PDB file. Read the position vectors (XTake a PDB file. Read the position vectors (X--, Y, Y-- and Zand Z--coordinates coordinates 
–– CartesionCartesion coordinates) of the first five alphacoordinates) of the first five alpha--carbonscarbons

Evaluate the corresponding generalized coordinates, i.e. the bonEvaluate the corresponding generalized coordinates, i.e. the bond d 
lengths llengths lii (i=2(i=2--5), bond angles 5), bond angles θθii (i=2(i=2--4), and dihedral angles 4), and dihedral angles φφ33 and and 
φφ44 using the Flory convention for defining these variables.using the Flory convention for defining these variables.

Using the PDB position vectors for alphaUsing the PDB position vectors for alpha--carbons 1, 2 and 3, carbons 1, 2 and 3, 
generate the alpha carbons 4 and 5, using the above generalized generate the alpha carbons 4 and 5, using the above generalized 
coordinates and bondcoordinates and bond--based transformation matrices.  Verify that based transformation matrices.  Verify that 
the original coordinates are reproduced. the original coordinates are reproduced. 



Side chains enjoy additional degrees of freedomSide chains enjoy additional degrees of freedom



Harmonic Oscillator ModelHarmonic Oscillator Model

Rapid movements of atoms about a valence Rapid movements of atoms about a valence 
bondbond
Oscillations is bond anglesOscillations is bond angles
Fluctuations around a rotational isomeric stateFluctuations around a rotational isomeric state
Domain motions Domain motions –– fluctuations between open fluctuations between open 
and closed forms of enzymesand closed forms of enzymes



Harmonic Oscillator ModelHarmonic Oscillator Model

A linear motion: Force scales 
linearly with displacementF = - k x

The corresponding equation of motion is of the form

m d2x/dt2 + k x = 0

The solution is the sinusoidal function x = x0sin(ωt+φ)
where ω is the frequency equal to (k/m)1/2, x0 and φ are 
the original position and velocity. 



Energy of a harmonic oscillatorEnergy of a harmonic oscillator

wherewhere v = v = dx/dtdx/dt = = d d [[x0sin(ωt + φ)]/dt = x0ω cos(ωt +φ)
EEKK = = ½½ mxmx00

22ωω22 coscos22((ωωt+t+φφ) = ) = ½½ mmωω22((xx00
22--xx22))

(because x = x0 sin(ωt + φ)  or x2 = x0
2 [1- cos2(ωt+φ)] x0

2 cos2(ωt+φ) = x0
2-x2)

Potential energy: Potential energy: EEPP = = ½½ kxkx22

Kinetic energy: Kinetic energy: EEKK = = ½½ mvmv22

Total energy: Total energy: EEPP + E+ EKK= = ½½ kxkx00
22

Always fixed



Rouse chain model for Rouse chain model for macromoleculesmacromolecules

Connectivity matrixConnectivity matrix
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Vtot = (γ/2) [ (∆R12)2  + (∆R23)2  + ........ (∆RN-1,N)2 ]

= (γ/2) [ (∆R1 - ∆R2)2  + (∆R2 - ∆R3)2   + ........                          (1) 



Homework 2: Potential energy for a system of Homework 2: Potential energy for a system of 
harmonic oscillatorsharmonic oscillators

(a)(a) Using the components Using the components ∆∆XiXi, , ∆∆YiYi and and ∆∆ZiZi of of ∆∆RRii, show that , show that EqEq 1 (Rouse 1 (Rouse 
potential) can be decomposed into three contributions, corresponpotential) can be decomposed into three contributions, corresponding to ding to 
the fluctuations along xthe fluctuations along x--, y, y-- and zand z--directions:directions:

VVtottot = V= VXX + V+ VYY + V+ VZ. Z. 
wherewhere

VX = (γ/2) [ (∆X1 - ∆X2)2  + (∆X2 - ∆X3)2   + ........ (2)         
and similar expressions hold for Vy and Vz. 

(b)(b) Show that Show that eqeq 2 can alternatively be written as2 can alternatively be written as

V = ½ ∆XT Γ ∆X (3)

where ∆XT = [∆X1 ∆X2 ∆X3.....∆XN], and ∆X is the corresponding column vector.
Hint: start from eq 3, obtain eq 2.



III. Understanding the physics

Harmonic oscillators Harmonic oscillators Gaussian distribution of fluctuations

Consider a network formed of beads/nodes (residues or groups 
of residues) and springs (native contacts)

Residues/nodes undergo Gaussian fluctuations about their 
mean positions – similar to the elastic network (EN) model of 
polymer gels (Flory)

Gaussian distribution of fluctuations

W(∆Ri) = exp{ -3 (∆Ri)2/2 <(∆Ri)2>}



Proteins can be modeled as an ensemble of harmonic oscillators

Gaussian Network Model - GNM



Molecular Movements Molecular Movements 

Physical properties of gases Physical properties of gases –– a short review (a short review (BenedekBenedek & & VillarsVillars, Chapter 2) , Chapter 2) 

PV = NkT
PV = nRTIdeal gas law:  PVM = RT

where Vwhere VMM is the molar volume, T is the absolute temperature, R is the gais the molar volume, T is the absolute temperature, R is the gas s 
constant (1.987 x 10constant (1.987 x 10--33 kcal/mol or 8.314 J/K), k is the Boltzmann constant, N kcal/mol or 8.314 J/K), k is the Boltzmann constant, N 
is the number of molecules, n is the number of moles = N/Nis the number of molecules, n is the number of moles = N/N00 , N, N00 is the is the 
AvogadroAvogadro’’s number. s number. 

Mean kinetic energy of a Mean kinetic energy of a moleculemolecule of mass m and its meanof mass m and its mean--square square 
velocity: velocity: 

<<½½ mvmv22>= (3/2) >= (3/2) kTkT <v<v22>= (3kT/m)>= (3kT/m)
 –
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vvrmsrms = <v= <v22>>½½ = (3kT/m)= (3kT/m)½½



Root-mean-square velocities

0.026 0.026 –– 0.260.26

(35 cm/s)(35 cm/s)

10108  8  -- 10101010

(5 x 10(5 x 1077 g/mol)g/mol)

VirusesViruses
(e.g. tobacco (e.g. tobacco 
mosaic virus)mosaic virus)

2.6 2.6 -- 262610104  4  -- 101066MacromoleculesMacromolecules

4744743232OO22

1880188022HH22

vvrmsrms ((m/sm/s))M (g/mol)M (g/mol)MoleculeMolecule

vvrmsrms = <v= <v22>>½½ = (3kT/m)= (3kT/m)½½

Brownian motion
(Brown, 1827)

These numbers provide estimates on the time/length scales of fluctuations or Brownian motions



Equipartition law

An energy of ½ kT associated with each degree of freedom

For a diatomic molecule, there are three translational (absolute), two rotational
degrees of freedom, and the mean translational energies are 

< < ½½ mvmvxx
22 >= < >= < ½½ mvmvYY

22 >= < >= < ½½ mvmvZZ
22 >= >= ½½ kTkT

And the mean rotational energy is kT. For non interacting single atom molecules
(ideal gases), there are only translational degrees of freedom such that the 
total internal energy is

U = 3/2 kT and specific heat is Cv = ∂U/∂T = 3/2 k  



Random WalkRandom Walk
Probability of R steps to the right and L 
steps to the left in a random walk of N stepsPN(R, L) = (1/2N) N! / R! L!

R + L = N
R – L = m PN(m) = (1/2N) N! / [(N + m/2)! (N - m/2)!]

Probability of ending up at m steps away 
from the origin, at the end of N steps

http://mathworld.wolfram.com/BinomialDistribution.html

Binomial  (or Bernoulli) Distribution
N = 15

P(n|N)

n
Properties of Binomial Distribution

(Npq)1/2Standard deviation 
NpqVariance 
NpMean 

=



Gaussian form of Bernoulli distributionGaussian form of Bernoulli distribution

PN(m) = (1/2N) N! / [(N + m/2)! (N - m/2)!]

As m increases, the above distribution may be approximated by a continuous function

PN(m) = (2/πN)½ exp {-m2/2N} Gaussian approximation

Examples of Gaussianly distributed variables:
•Displacement (by random walk) along x-direction W(x) ≈ exp {-x2/2Nl2} where m=x/l
•Fluctuations near an equilibrium position W(r) ≈ exp {-3(∆r)2/2<(∆r)2>0}
•Maxwell-Boltzmann distribution of velocities P(vx) = (m/2πkt)½ exp (-½mvx

2/kT}
•Time-dependent diffusion of a particle P(x,t) = √[4πDt] exp(-x2/4Dt}

Length of 
Each step



Examples of Gaussianly distributed variables:

• Displacement (by random walk) along x-direction W(x) ≈ exp {-x2/2Nl2} where m=x/l

• Fluctuations near an equilibrium position W(r) ≈ exp {-3(∆r)2/2<(∆r)2>0}

• Maxwell-Boltzmann distribution of velocities P(vx) = (m/2πkt)½ exp (-½mvx
2/kT}

• Time-dependent diffusion of a particle P(x,t) = √[4πDt] exp(-x2/4Dt}
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