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‘Protein folding problem’

Function

Fundamental paradigm: Sequence encodes structure; structure encodes function



Structure - Function

To what degree is fold
associated with function?

Structure - Dynamics = Function



Is there a unique relation between fold and function?
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Knowledge of sequence or structure does not
permit us to

Understand the mechanism of function
» Device methods of controlling/inhibiting function
* Predict the behavior in different forms, different environments
» Answer the questions ‘how’ or ‘why’!

Structure ->(Dynamics)—> Function



To understand the principles that underlie the
passage

to function...
from structure,
; >
I!"?/;:\

0.5\ We need to examine the
Mokl (/N conformational dynamics.
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State-of-the-art in computational/mathematical biology

Molecular computations

e Limited to small systems (one
macromolecule) or short times (~ ns)
e Dependent on force field

e Solvent effect — a problem

Growth Factors
¢ 3

Subcellular/cellular computations

e Simple mass-action kinetics
e No spatial-structural realism
e Lack of data for model parameters



Supramolecular dynamics
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Wikoff, Hendrix and coworkers

Multiscale modeling — from full atomic to multimeric structures



Subcellular and cellular simulations
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Dynamics systems - Mathematical modeling using ODEs




Progresses in molecular approaches:
Coarse-grained approaches for large complexes/assemblies

Example: EN models for modeling
ribosomal machinery (Frank et al,
2003; Rader et al., 2004)



http://www.ccbb.pitt.edu/bahar/162.pdf

A. Comparison of static structures available in the PDB for the same
protein in different form has been widely used as an indirect method
of inferring dynamics.

Bahar et al. J. Mol. Biol. 285, 1023, 1999.

B. NMR structures provide information on
fluctuation dynamics
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Folding/unfolding dynamics

02 Passage OVEr one or more energy barriers B. Ozkan, K.A. Dill & I. Bahar, Protein Sci.
= L _ 11, 1958-1970, 2002
@ Transitions between infinitely many conformations

Fluctuations near the folded state

@ Local conformational changes
2 Fluctuations near a global minimum




Several modes of motions in native state

Fab arm waving

\

-

i Fab elbow
bend rotation

Fc wagging

Figure 4 Flexibility of the IgG molecule.
Reproduced with permission from Immunology Today, February 199522,




Macromolecular Conformations

Schematic representation of a chain of n backbone units.

Bonds are labeled from 2 to n, and structural units from
1 to n. The location of the ith unit with respect to the
laboratory-fixed frame OXYZ is indicated by the position
vector Ri.

Schematic representation of a portion of the main chain of a
macromolecule. li is the bond vector extending from unit i-

1 to i, as shown. (@, denotes the torsional angle about
bond i.



How/why does a molecule move?

Among the 3N-6 internal degrees of
freedom, (i.e. changes
in dihedral angles) are the softest, and

mainly responsible for the functional
motions



Two types of bond rotational motions

= Fluctuations around isomeric states

= Jumps between isoKic states




Definition of dihedral angles

Spatial representation of the torsional mobility around the bond i+1.
The torsional angle ¢i+1 of bond i+1 determines the position of the
atom Ci+2 relative to Ci-1. C'i+2 and C"i+2 represent the positions of

atom i+2, when @i+1 assumes the respective values 180° and 0°.
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Rotational energy as a function of dihedral angle for a threefold
symmetric torsional potential (dashed curve) and a three-state
potential with a preference for the trans isomer (j = 180°) over the
gauche isomers (60° and 300°) (solid curve), and the cis (0°) state
being most unfavorable.



Rotational Isomeric States (Flory — Nobel 1974)

¢. Calculation of generalized coordinates from known position vectors.

In structural analyses, it 1s often necessary to transform known Carresian
coordinates {x2. x3, v3, ..... Xn. ¥n. Zn{ nto generalized coordinates {12, 13, ..
17,82.83, .8 193, ¢4, ..., Pp-1 | or vice versa. To this aim, it 1s convenient
to define the bond vectors I, pomnting from atom +1 to atom 1. The following
equations are conveniently used for transforming the Cartesian into the
generalized coordinates

ay

L= -1 (1)

. =1
Ok ~ O (T T« M) —cosel | K
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where my_ 1s the unit normal vector, perpendicular to the plane spanned by |,
and .. found from

m = [(hox by ) /| Beox T ] (4)




Bond-based coordinate systems

Transformation matrix between frames i+1 and i

)

cosH sin 4 0

Ti '::{-}i~ i = -sinHi cos i COS{H COs i -sin i

-SINGsiNg  COS B SiNg 005 iy

Virtual bond representation of protein backbone




Homework 1: Passage between Cartesian
coordinates and generalized coordinates

= Take a PDB file. Read the position vectors (X-, Y- and Z-coordinates
— Cartesion coordinates) of the first five alpha-carbons

= Evaluate the corresponding generalized coordinates, i.e. the bond
lengths |, (i=2-5), bond angles 6, (i=2-4), and dihedral angles ¢, and
¢, using the Flory convention for defining these variables.

= Using the PDB position vectors for alpha-carbons 1, 2 and 3,
generate the alpha carbons 4 and 5, using the above generalized
coordinates and bond-based transformation matrices. Verify that
the original coordinates are reproduced.



Side chains enjoy additional degrees of freedom




Harmonic Oscillator Model

Rapid movements of atoms about a valence
bond

Oscillations is bond angles
Fluctuations around a rotational isomeric state

Domain motions — fluctuations between open
and closed forms of enzymes



Harmonic Oscillator Model

F=_Fk A linear motion: Force scales
-RX linearly with displacement

The corresponding equation of motion is of the form

m d’x/d + kx =0

The solution is the sinusoidal function x = x sin(wt+¢)

where  is the frequency equal to (k/m)"?, x,and ¢ are
the original position and velocity.



Energy of a harmonic oscillator

= Kinetic energy: £, = 7 my-

where v = dx/dt = d [x,sin(ot + §))/dt = x,0 cos(ot +¢)
2>E, = V2 mx,20? cos?(ot+d) = V2 mo?(x,-x?)

(because x = x, sin(ot + ¢) or x? = x,2 [1- cos?(ot+¢)] = x,2 cos?(ot+d) = x,2-x?)
= Potential energy: £, = 7 kx’

= Total energy: £, + E,— 7 o,/



Rouse chain model for

Connectivity matrix

= (1/2) [ (AR, - AR,)2 + (AR,-AR,)2 + ........ (1)



Homework 2: Potential energy for a system of
harmonic oscillators

(a) Using the components AXi, AYi and AZi of ARi, show that Eq 1 (Rouse
potential) can be decomposed into three contributions, corresponding to
the fluctuations along x-, y- and z-directions:

Vit = Vy + Vy +V;,
where

Vy = (7/2) [ (AXq - AX,)2 + (AX, - AX3)2 + ... (2)

and similar expressions hold for Vy and Vz.

(b) Show that eq 2 can alternatively be written as

V =12 AXTT AX (3)

where AXT = [AX; AX, AX;.....AX\], and AX is the corresponding column vector.
Hint: start from eq 3, obtain eq 2.



I11. Understanding the physics

Harmonic oscillators = Gaussian distribution of fluctuations

%> Consider a network formed of beads/nodes (residues or groups
of residues) and springs (native contacts)

%> Residues/nodes undergo Gaussian fluctuations about their

mean positions — similar to the model of
polymer gels (Flory)

W(AR) = exp{ -3 (AR)*/2 <(AR)*>}



Proteins can be modeled as an ensemble of harmonic oscillators




Molecular Movements

Physical properties of gases — a short review (Benedek & Villars, Chapter 2)

PV = NKT
PV = nRT

where V,, is the molar volume, T is the absolute temperature, R is the gas
constant (1.987 x 103 kcal/mol or 8.314 J/K), k is the Boltzmann constant, N
is the number of molecules, niis the number of moles = N/N,, N, is the
Avogadro’s number.

Ideal gas law: PV, = RT

Mean kinetic energy of a of mass m and its mean-square e
velocity: &2
<lh mv?>= (3/2) KT > <v2>= (3kT/m) &\0@99
o®
s
_ 1 _ 1 AR
Vime = <V2>"2 = (3KT/m)” s



Root-mean-square velocities

\'

= <v2>" = (3KT/m)”

Brownian motion
(Brown, 1827)

Fms
Molecule M (g/mol) [ Vi (m/s)
H, 2 1880
O, 32 474
Macromolecules 10% - 108 2.6 - 26
Viruses 108 - 1010 0.026 — 0.26
(e.g. tobacco (5 x 107 g/mol) (35 cmy/s)

Mosaic Virus)

These numbers provide estimates on the time/length scales of fluctuations or Brownian motions



Equipartition law

An energy of 2 kT associated with each degree of freedom

For a diatomic molecule, there are three translational (absolute), two rotational
degrees of freedom, and the mean translational energies are

< amy? >= < 2 mvy? >= < 2 mv,2 >= V2 KT

And the mean rotational energy is kT. For non interacting single atom molecules

(ideal gases), there are only translational degrees of freedom such that the
total internal energy is

U = 3/2 KT and specific heat is C, = oU/dT = 3/2 k



Random Walk

Probability of R steps to the right and L

PN(RI L) — (1/2N) NI / RI LI steps to the left in a random walk of N steps

R+L=N
R—L=m

2 Py(m) = (1/2% N! / [(N + m/2)! (N - m/2)!]

Probability of ending up at m steps away
from the origin, at the end of N steps

http://mathworld.wolfram.com/BinomialDistribution.html

| Variance  |Npq |
Standard deviation | (Npq)'2




Gaussian form of Bernoulli distribution

Py(m) = (1/2N) N! / [(N + m/2)! (N - m/2)!]
As m increases, the above distribution may be approximated by a continuous function

Py(m) = (2/xN)”> exp {-m?/2N}  Gaussian approximation

Length of
Each step

\

eDisplacement (by random walk) along x-direction > W(x) ~ exp {-x2/2NI2} where m=x/I
eFluctuations near an equilibrium position > W(r) =~ exp {-3(Ar)?/2<(ar)>>,}
eMaxwell-Boltzmann distribution of velocities > P(v,) = (m/2nkt)”> exp (-Yamv,2/kT}
eTime-dependent diffusion of a particle > P(x,t) = V[4nDt] exp(-x/4Dt}




 Displacement (by random walk) along x-direction - W(x) ~ exp {-x%/2NI?} where m=x/I
e Fluctuations near an equilibrium position > W(r) ~ exp {-3(Ar)?/2<(Ar)*>,}
e Maxwell-Boltzmann distribution of velocities > P(v,) = (m/2rkt)”> exp (-"2mv,2/kT}

« Time-dependent diffusion of a particle > P(x,t) = V[4nDt] exp(-x2/4Dt}
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