

Dynamics and Kinetics

• Oxford English Dictionary, 2d edition

Dynamics: 1. a. The branch of Physics which treats of the action of Force: in earlier use restricted to the action of force in producing or varying motion, and thus opposed to *Statics* (which treats of rest or equilibrium under the action of forces); more recently (see quots. 1863-67), the name *Kinetics* has been introduced for the former, Dynamics being taken in a more comprehensive (and more etymological) sense, to include Statics and Kinetics. But the earlier usage, in which Statics and Dynamics are treated as co-ordinate, is still retained by some physicists, and has largely influenced the popular and transferred applications of the word and its derivatives. Also called dynamic. b. That branch of any science in which force or forces are considered.

January 1, 2005

Pei Tang

5

Dynamics and Kinetics Oxford English Dictionary, 2d edition Kinetics 1. The branch of dynamics which investigates the relations between the motions of bodies and the forces acting upon them; opposed to Statics, which treats of bodies in equilibrium. 2a. A field of study concerned with the mechanisms and rates of chemical reactions or other kinds of process; see also gas kinetics. 2b. Those aspects of a particular process that relate to the rate at which it occurs; the details of the way a process occurs, esp. as regards its rate. January 1, 2005 Pei Tang 6

Protein motions are essential for functions

- Moreover, in terms of bioenergetics, a significant component of molecular stability derives from motion, even in the context of folded states of molecules
- Therefore, a complete and much more useful description of the structure of a molecule will require an understanding of how the structure changes with time.

January 1, 2005

Pei Tang

11

		Syllabus		
	Date	Topics	Lecturer	
1	01/06	General Introduction – Plan	Bahar, Tang	
2	01/11	Fluctuations vs. Rotational Isomeric dransition i Macromolecules (Chapt 6 in Dauge et al	Bahar	
3	01/13	MD simulations (Leach)	Hagai	
4	01/18	Folding Kinetics, Analysis 2 ap 2 and na 19 in Fersht)	Camacho	
5	01/20	Co form to al C a graph 1914 8 in Daune) + Chapt 10 in Fersht	Zuckerman	
6	01/25	Ch n F und Knetics – Enzyme Kinetics- Michaelis Menten (Cl pt : Fersht)	Bahar	
7	01/27	Introduction of Experimental methods + Proton exchange (Chapt 9 in Daune)	Tang	
8	02/1	Inelastic parce and Light Suttering for dynamics (Pupt7 in Holde +	Tang	
9	02/03	NMR fc	Tang	
10	02/08	NMR fc	Tang	
11	02/10	NMR for protection	Tang	
12	02/15	Review	Tang	
13	02/17	1 st exam	Tang	

23	05/51		Savena
25	03/31	Motions from EPR (II)	Saxena
24	03/29	Motions from EPR (I)	Saxena
23	03/24	Ion channels and electrophysiology II	Levitan
22	03/22	Ion channels and electrophysiology I	Levitan
21	03/17	Single-molecule dynamic, i	Leuba
20	03/15	Single-molecule	
19	03/10	Spring Break	
18	03/08	Spring Break	
17	03/03	coupled rec	
17	03/03	Functional cont	
16	03/01	Equilibrium flu	s aram
15	02/24	Folding of member e protein model system rhodopsin a teteriorhodopsin	Klein-Seetharaman
14	02/22	Folding of soluble protein model system lysozym	e Klein-Seetharaman

