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1 Introduction
Before we can perform theoretical and computational studies on biomolecules, it would behoove
us to have an idea of how other, similar molecules that are not associated with living organisms
behave. The molecules of life – DNA, RNA and proteins – are chain molecules; however, their
behavior is remarkably different than other chain molecules, such as might be found in household
plastics. Here we will investigate the statistical physics of chain molecules using simple but well-
studied models. We will start by defining some statistical measures of chain conformations, and
then look at successively more complicated models. In the end we will see that simple models
reveal a surprising amount of information about the statistical properties of chains, but that simple
models are not sufficient for describing the general properties of proteins. Additional informa-
tion on the topics covered here can be found in the texts of Flory [1], Dill [2], Phillips [3] and
Hiemenz [4].

2 Statistical Measures of Chain Conformation
First we will establish some conventions for discussion. Consider a chain as an ordered set of N
beads, or particles, 1 . . . N , connected by N − 1 links. For convenience, it will be useful to define
n ≡ N − 1 as the number of links. Depending on our system of study, beads may be atoms,
residues, monomers, etc., and links may be bonds (between atoms) or pseudobonds (e.g., between
Cα atoms in a protein. The location of bead i is given by ri = (xi, yi, zi)

T , and link i points from
bead i to bead i+ 1: li = ri+1 − ri and has length li =

√
(ri+1 − ri)2.

The link length li does not have to be the same for all i, but we will often assume that this is
the case for simplicity. When considering proteins, for example, there are three distinct backbone
bond lengths, corresponding to N-Cα, Cα-C and C-N bonds. If all backbone atoms are treated
as beads, then there will be three different bond lengths. If instead only Cα atoms act as beads,
then all links will have approximately equal length (3.8Å). The primary use of the link length (and
other chain details) in these notes is to calculate statistical averages, so the average link length,
l = 1

n

∑n
i=1

√
li · li is in general sufficient.

The position of the first bead on the chain, r1, is arbitrary. Given r1, we can use the definition
of l1 to find the position of the second bead as r2 = r1 + l1. Continuing in this way, the position of
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Figure 1: A simple model chain molecule.

bead i is

ri = r1 +
i−1∑
j=1

lj .

The end-to-end vector is defined as

h ≡ rN − r1 (1)

=
N−1∑
i

li .

For practical reasons, h is not a particularly informative measure of chain conformation. Real
chain molecules move – not just internally, but externally. A rigid chain will tend to rotate and
translate in space, even in the absence of internal motions of its beads relative to each other. This
rotation is spatially isotropic, meaning that all orientations are equally likely. Thus, if we average
h over all chain orientations, we will find that it becomes zero: 〈h〉 = 0.

2.1 End-to-end distance
A slightly better measure, and the one that will get us started on calculating statistical features of
chains, is the end-to-end distance:

h ≡ 〈|h|2〉1/2 . (2)
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The squared end-to-end distance will prove useful in many calculations and can be found:

h2 = 〈

(
N−1∑
i=1

li

)
·

(
N−1∑
j=1

lj

)
〉

= 〈
N−1∑
i=1

N−1∑
j=1

li · lj〉

= 〈
N−1∑
i=1

li · li +
N−1∑
i=1

∑
j 6=i

li · lj〉

=
N−1∑
i=1

〈li · li〉+
N−1∑
i=1

∑
j 6=i

〈li · lj〉

= nl2 +
N−1∑
i=1

∑
j 6=i

〈li · lj〉 , (3)

where we have made use of the average squared link length, l2, in the last step. The first term in
Eq. 3 captures a universal dependence of h on the number of links and their average length. The
second term depends on the constraints of the chain and is model-dependent.

Fun as it is to calculate expressions like Eq. 3, they are often of little use in reality. The
mean end-to-end distance is difficult to accurately measure in experiments, and it only provides
information on two of the beads on the chain. The remainder of the chain, which is often of great
interest, is ignored by h, leaving something to be desired. Nonetheless, the simple form of h2 is
useful because it relates to more descriptive measures of chain conformation.

2.2 Radius of Gyration
A more commonly used statistical descriptor of chain conformation is the radius of gyration, Rg,
defined as the average distance of any bead from the chain’s center of mass. Recall that the center
of mass is given by

rCM =

∑N
i=1miri∑N
i=1mi

,

where mi is the mass of bead i. Defining the position of bead i relative to the center of mass as
si ≡ ri − rCM , the radius of gyration is

Rg ≡ 〈s2〉1/2 . (4)

Eq. 4 is valid not only for chains, but for any distribution of points in space. Rg is a measure of the
spread of a distribution: Small Rg implies a compact distribution, whereas large Rg indicates an
open or extended distribution. It can be shown that Rg is related to the average distance between
particles. An expression that is equivalent to Eq. 4 is

R2
g =

1

N2

N∑
i=1

∑
j>i

〈|rij|2〉 . (5)
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Here rij simply means the distance between particles i and j. As with h, it is often easier to work
with R2

g. Not only can Rg apply to any distribution of discrete points, it can also be generalized to
continua:

R2
g =

∫
dV ρ(r)(r− rCM)2 .

Applying the above expression to a uniform sphere of radius R, we can see that Rg =
√

3
5
R.

It might be fun to think about the relationship between h and Rg. Consider a chain in a random
conformation with some Rg. Without knowing anything else about the chain, we might assume
that its beads are distributed uniformly in space, amounting to something like a sphere of radius

R =
√

5
3
Rg. The first bead of the chain has an equal probability of being anywhere in the sphere,

as does the last bead. From Eq. 5, we know that the average distance between the ends of the chain
is Rg. So we might expect R2

g ∼ h2, naively. This can be shown rigorously for various cases, but
as a simple approximation, it shows that knowing h2 tells us something about R2

g. Thus, if you
can’t calculate Rg, it may suffice to calculate h2. Our initial excursion into the end-to-end distance
wasn’t all for naught, after all.

2.3 Persistence length
A third measure of chain conformation that may come in handy is the persistence length,

ξp =
1

l

n∑
j=i

〈li · lj〉 (6)

=
1

l
[〈li · li〉+ 〈li · li+1〉+ . . .+ 〈li · ln〉] .

Flory [1] defines this as the “average sum of the projections of all bonds j : j ≥ i on an arbitrary
bond i in an indefinitely long chain.” Persistence length is a measure of the chain’s tendency to
remain straight, or the average distance that a chain travels before turning 90◦.

Happily, ξp is also related to h2. The arbitrary link that we have referenced is somewhere in the
middle of the chain, far removed from either of the ends, so we could just as easily calculated ξp
by summing from 1 to i instead of from i to n:

ξp = 〈 li
l
·

n∑
j=i

lj〉 = 〈 li
l
·

i∑
j=1

lj〉 .

Combining these two equivalent definitions for ξp,

2ξp =
1

l

n∑
j=1

〈li · lj〉+
1

l
〈li · li〉 .

Understanding that for a homogeneous chain, ξp should be independent of the reference link, one
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can average it over all links:

2ξp =
1

n

n∑
i=1

1

l

n∑
j=1

〈li · lj〉+ l

ξp =
h2

2nl
+
l

2
. (7)

Once again, we can relate an informative quantity, ξp, to an easily calculable one, h2.

3 Freely Jointed Chain
The simplest model of a chain is the Freely Jointed Chain, or Random Flight. This model assumes
no restrictions on bond angles and amounts to a random walk in three dimensions. Even though
the assumptions (no bond angle restrictions, no penalty for self-intersection, no solvent) may make
this model appear to be comically simple, it makes a surprisingly accurate first attempt at exploring
chain molecules.

3.1 FJC: End-to-end distance
From Eq. 3,

h2 = nl2 +
n∑
i=1

∑
j 6=i

〈li · lj〉 . (8)

The second term on the right-hand side of Eq. 8 is zero. The chain is free to rotate about all bonds,
so 〈li · lj〉 = l2δij ∀ i, j. This can be shown easily by integrating over the conformations of the
chain. Note that this result implies that ξp = l for the freely jointed chain, indicating that the chain
has no persistence past one link. The end-to-end distance,

h =
√
nl , (9)

recovers the scaling that we find for a random walk.
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3.2 FJC: Radius of gyration
That was easy enough, right? Now, what about the radius of gyration of the FJC? Let’s start from
Eq. 5:

R2
g =

1

N2

N∑
i=1

∑
j>i

〈|rij|2〉

=
1

N2

N∑
i=1

∑
j>i

|j − i|l2

=
l2

N2

N−1∑
k=1

k(N − k)

=
l2

N2

[
N

N−1∑
k=1

k −
N−1∑
k=1

k2

]
. (10)

The two geometric series in Eq. 10 can be simplified algebraically. The first one is just the number
of elements in the upper triangle of a square matrix, but the closed form of the second series is
more involved (A simple derivation appears in the Appendix). Substituting:

R2
g =

l2

N2

[
N2(N − 1)

2
− N(N − 1)(2N − 1)

6

]
(11)

=
l2

6

[
N − 1

N

]
.

For N � 1, the second term is negligible, leaving

R2
g ≈

Nl2

6

=
h2 + l2

6
.

So R2
g indeed goes like h2 for FJC, agreeing with our earlier approximation. In the limit of small

l, R2
g ∼ h2/6.

3.3 Distribution of end-to-end vector for FJC
As its alternate name (“Random Flight”) implies, the FJC is just diffusion in three dimensions. We
know that, in one dimension, the probability for traveling a distance ∆x after taking n steps of
length l is

P (n,∆x) =
1√

2πnl2
exp

{
− x2

2nl2

}
.

We can conceptually extend this to a random flight in three dimensions by altering the step size or
the number of steps. Consider a random walk on a 3D lattice. There is no difference between x−,
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y− and z− directions, so we expect P (n,∆x) = P (n,∆y) = P (n,∆z). If our walk has n total
steps, then we expect n/3 steps to be taken in each direction. Alternatively, we might argue that a
single step of length l in 3D can be decomposed into x−, y− and z− components: l2 = l2x+ l2y+ l2z .
Again invoking spatial isotropy, we find lx = ly = lz = l/

√
3. Thus, if we perform a 3D random

walk starting at the origin and using steps of length l, the probability of the walk having some
x−component after n steps is

P ′(n, x) =

√
3

2πnl2
exp

{
− 3x2

2nl2

}
,

and similarly for the y− and z− components. As usual, this result can be shown more rigorously
by those so inclined. The probability of finding a final displacement vector h after n steps of a
random flight in 3D is then

P (n,h) = P ′(n, hx)P
′(n, hy)P

′(n, hz)

=

[
3

2πnl2

]3/2
exp

{
− 3h2

2nl2

}
. (12)

Does this result make sense? It indicates that the probability of winding up at h depends on the
magnitude, but not the direction, of h, consistent with spatial isotropy. The width of the distribution
is σ = l

√
n/3, just as we would expect for a random walk. It is also peaked at h = 0, indicating

that the chain returns to the origin. That might seem peculiar, and will be discussed more below;
however, we can confirm this with another simple calculation. From the definition of the end-to-
end vector (Eq. 1) we find

〈h〉 = 〈rN − r1〉

= 〈
N−1∑
i=1

li〉

=
n∑
i=1

〈li〉

= 0 .

Finally, there is a non-zero probability of finding a chain with length greater than nl. This is
obviously unphysical and results from approximating a multinomial distribution with a Gaussian.

3.4 End-to-end distance revisited
So what about that FJC returning to the origin? Does this mean that we expect the distance between
ends to be zero? Not at all. We might reason that the probability for finding a particular h vector
will decrease with its magnitude. If we consider a sphere of radius h centered at r1 (which we
will also take as the origin), then there is only one vector h that corresponds to zero distance
between the chain ends. As h increases, the allowed area onto which the second chain end may
fall increases, so the probability of a specific h vector for a given h decreases. More formally,
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we can say that the probability P (n, h) of finding an end-to-end distance h is just the sum of all
probabilities of finding end-to-end vectors h with magnitude |h| = h. This sum is the integral over
the surface of the sphere with radius h:

P (n, h) =

∫ 2π

0

dφ

∫ π

0

dθ r2 sin θP (n,h : |h| = r)

= 4πh2
[

3

2πnl2

]3/2
exp

{
− 3h2

2nl2

}
. (13)

Note that Eq. 13 is already normalized:∫ ∞
0

dh P (n, h) = 1 .

Eq. 13 is the familiar Maxwell-Boltzmann distribution for particle speeds in a gas. Differentiation
yields a maximum probability at h =

√
2nl2/3.

So what is 〈h2〉? We find it by integrating, as usual:

〈h2〉 =

∫
dr r2P (n, r)

= 4πh2
[

3

2πnl2

]3/2 ∫ ∞
0

dr r4 exp

{
− 3r2

2nl2

}
= nl2 , (14)

where we have made use of the well-known result
∫∞
0

dx x4e−αx
2

= 3
8α2

√
π
α

. Eq. 14 is exactly the
result that we expected: The distance of the walk increases with the square root of the number of
steps, as we found in Eq. 9.

3.5 Elasticity in FJC
We can use our knowledge of distributions of the FJC to calculate its mechanical properties. Let
us start by considering the free energy of the FJC. Recall

F = 〈E〉 − TS

The 〈E〉 term is zero because there is neither a potential or motion in the FJC. Were we to assume
that the chain can move, the lack of self-interaction would make the kinetic energy equal for all
configurations, and 〈E〉 = 0 still. We are left with

F = −TS .

The entropy for a chain of N beads with end-to-end vector h is

S(N,h) = kB lnW (N,h)
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where W (N,h) is the number of conformations of chains of length N that have end-to-end vector
h. This is related to the probability of h (Eq. 12) by W (N,h) = P (N,h)W (N), where W (N)
is the total number of configurations of the freely jointed chain of N beads (i.e., considering all
end-to-end vectors). We can then write the free energy as

F (N,h) = −kBT lnP (N,h)− T lnW (N)

=
3kBTh

2

2Nl2
− 3T

2
ln

[
3W (N)2/3

2πNl2

]
. (15)

Only the first term depends on the chain conformation; the second term is a constant of the system
and can essentially be ignored. In fact, as we’re dealing with free energies, it is really differences
that we are interested in, so this constant term will explicitly drop out soon.

One thing that we see from Eq. 15 is that the minimum free energy occurs for h = 0. We will
use this as a reference point and ask how the free energy changes as we pull one end of the chain
away from the other along some arbitrary vector h. We have

∆F (N,h) ≡ F (N,h)− F (N, 0)

= −kBT ln

[
P (N,h)

P (N, 0)

]
=

3kBTh
2

2nl2
. (16)

Interestingly, the energy increases harmonically, just as if we were pulling a spring. More in-
teresting still is that this effect arises solely from entropic considerations. Comparing Eq. 16
with Hooke’s Law (E = 1

2
k(∆x)2), we find that the effective force constant for the FJC is

k = 3kBT/nl
2. Thus, the restoring force that pulls the chain ends together increases with temper-

ature but decreases with chain length.

3.6 How does FJC compare to proteins?
This model does not represent proteins well. We find that for globular proteins (see Fig. 2), Rg ∼
N0.380.

Among the many differences between proteins and the FJC are

• Proteins have restricted bond angles

• Proteins have side chains

• Proteins cannot self-intersect

• Proteins are solvated

• Protein residue-residue interactions have non-zero potential energies

We will look next at how fixed bond angles alter the properties of the model chain. The other issues
are difficult to address and will have to wait.
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Figure 2: End-to-end distance and gyration radius for 2674 non-homologous globular proteins.

4 Freely Rotating Chain
The FJC is truly a minimalist representation of reality, but it’s a start. Perhaps the simplest bit of
complexity that we can tack on to it is a constraint on bond angles. Assume that we have a chain
in which all bond angles have the fixed value θ. This is called the Freely Rotating Chain. The
methods developed here can be generalized to more realistic systems, such a proteins, in which the
bond angles are not all identical, but we will start with the simplest case. The convention that will

Figure 3: The freely jointed chain, wherein all bond angles are identical.

be used is that the bond angle at bead i satisfies (see Fig. 3)

li−1 · li = |li||li+1| cos θi .

TheN−2 bond angles for a chain ofN beads have indices 2 . . . (N−1). Let’s start by considering
h for the FRC, and let us assume that all links have the same length and all bonds have the same
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angle. That is, |li| = l, θi = θ ∀ i. The second term in Eq. 3,
∑

i

∑
j〈li · lj〉, does not vanish in this

case; however, we can find it by recursion. By definition,

li · li+1 = l2 cos θ .

Then,

〈li · li+2〉 = li · (̂li+1 · li+2)̂li+1

= l2 cos2 θ ,

and in general
〈li · li+k〉 = l2 cosk θ .

In the above, hats represent unit vectors. One can show that all terms orthogonal to the links
average to zero owing to the freedom of the dihedral angles. We won’t do that here. Going back to
Eq. 3, we find

h2 = nl2 +
n∑
i=1

∑
j 6=i

〈li · lj〉 (17)

= nl2 +
n∑
i=1

∑
j 6=i

l2 cos|j−i| θ

= nl2 + 2
n∑
i=1

∑
j>i

l2 cos|j−i| θ

The second term is just l2 times a sum of powers of cos θ. By restricting the sum to j > i, we
are effectively looking at the upper triangle of the matrix of inner products of link vectors. The
number of times that the kth power of cos θ appears is equal to the number of elements in the kth

diagonal above the main diagonal of the n× n matrix. Thus,

n∑
i=1

∑
j 6=i

〈li · lj〉 = 2
n−1∑
k=1

(n− k)l2 cosk θ

= 2nl2
n−1∑
k=1

cosk θ − 2l2
n−1∑
k=1

k cosk θ (18)

≈ 2l2 cos θ

[
n

1− cos θ
− 1

(1− cos θ)2

]
,
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where we have made use of the identities
n∑
k=1

xk =
x(1− xn)

1− x

≈ x

1− x
n∑
k=1

kxk =
x(1− xn+1)

(1− x)2

≈ x

(1− x)2

Then,

h2 = nl2
[

1 + cos θ

1− cos θ
− 2 cos θ

n(1− cos θ)2

]
≈ nl2

[
1 + cos θ

1− cos θ

]
Note that 〈h2〉 ∼ nl2, just like in the FJC; however, there is now an additional term of (1 +
cos θ)/(1− cos θ), called the stiffness. For θ = π/2, the result is exactly the same as the FJC. For
θ < π/2, 〈h2〉 > Nl2, and the chain is more extended than the FJC. For θ > π/2, 〈h2〉 < nl2, and
the chain is compact. At θ = 0, the chain should be ballistic (i.e., h2 = n2l2). Instead, we find that
it has infinite length. This is a fault of the large n approximations that we have made. Returning to
the last exact expression, Eq. 18, it can be seen that the chain is indeed ballistic for θ = 0.

4.1 Characteristic Ratio
We have seen that for the FJC, h2 = nl2, whereas for the FRC, h2 = nl2(1 + cos θ)/(1 − cos θ).
Although we don’t see this explicitly here, for a general chain molecule one might expect the
measured square end-to-end distance, 〈h2〉0, (note the subscript) to scale as 〈h2〉0 = Cnnl

2. In the
limit n → ∞, we find for the FRC C∞ = (1 + cos θ)/(1 − cos θ). The constant C∞ is called the
characteristic ratio, and it can be experimentally determined for a variety of chain molecules. For
carbon-based polymers, 4 ≤ C∞ ≤ 12, in general. By defining an effective length of leff ≡

√
C∞l,

we see that h2 = nl2eff . That is, as far as the end-to-end distance is concerned, the FRC (and many
other simple models) behave as a FJC with effective link length leff .

4.2 FRC: Persistence Length
Going back to Eq. 7, it can be seen that the persistence length of the FRC is

ξp =
l

2
(C∞ + 1)

≈ C∞l

2
for l→ 0
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Or, starting from Eq. 6, it can be seen for the FRC:

ξp =
1

l

n∑
j=i

〈li · lj〉

=
1

l

n∑
j=1

l2 cosj−1 θ

= l

n−1∑
j=0

cosj θ

= l

[
cos0 θ +

n−1∑
j=1

cosj θ

]

= l

[
1 +

cos θ(1− cosn−1 θ)

1− cos θ

]
= l

[
1− cosn θ

1− cos θ

]
≈ l

1− cos θ

where the final approximation is taken in the limit n → ∞. We can see that when θ = 0, ξp is
infinite, which is in accord with what we would expect for a straight chain of infinitely many links.
When θ = π/2, ξp = l, once again agreeing with the FJC.

5 Local Coordinates
In general, chain molecules are not as simple as the FJC or FRC. Usually bond lengths and angles
can vary in some range, as can dihedral angles. Frequently these values are correlated, as is the case
for the φ and ψ backbone dihedrals in proteins. We can address the general case using matrices.

Suppose that we have a chain ofN beads [1 . . . N ]. There are n = (N−1) links [1, . . . , (N−1)],
N−2 bond angles [2, . . . , (N−1)], andN−3 dihedral angles [2, . . . , (N−2)]. With the exception
of the dihedral angles, all of these have been previously defined. The dihedral φi is the clockwise
rotation about link i from the cis conformation, and will be defined mathematically below.

For each internal bead i, define a local orthogonal coordinate basis l̂i, b̂i, n̂i as follows:

l̂i ≡
ri+1 − ri
|ri+1 − ri|

b̂i ≡
l̂i × l̂i−1

sin θi

n̂i ≡ b̂i × l̂i

The selection of coordinates is not unique; there are other possibilities that are equally valid, such
as that discussed by Flory [1]. The coordinates here have the following interpretation: l̂i is the
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(a) Local coordinate systems (b) View along l̂i.

Figure 4: Local coordinates defined using backbone conformation.

unit link vector that we have been using all along; b̂i is a binormal vector that defines the plane
containing beads i − 1, i and i + 1; n̂i is normal to the curve and perpendicular to both l̂i and b̂i.
The three form a right-handed coordinate system at bead i: l̂i × n̂i = b̂i. Nicely, we can construct
a recursion relation to form coordinate systems from earlier systems:

l̂i+1 = cos θi+1̂li + sin θi+1[− cosφin̂i − sinφib̂i]

b̂i+1 =
l̂i × l̂i−1

sin θi

=
1

sin θi+1

∣∣∣∣∣∣
l̂i n̂i b̂i

cos θi+1 − sin θi+1 cosφi − sin θi+1 sinφi
1 0 0

∣∣∣∣∣∣
= − sinφin̂i + cosφib̂i

n̂i+1 = b̂i × l̂i

=

∣∣∣∣∣∣
l̂i n̂i b̂i
0 − sinφi cosφi

cos θi+1 − sin θi+1 cosφi − sin θi+1 sinφi

∣∣∣∣∣∣
= sin θi+1̂li + cos θi+1 cosφin̂i + cos θi+1 sinφib̂i

Or,  l̂i+1

n̂i+1

b̂i+1

 =

cos θi+1 − sin θi+1 cosφi sin θi+1 sinφi
sin θi+1 cos θi+1 cosφi cos θi+1 sinφi

0 − sinφi cosφi

 l̂i
n̂i
b̂i

 (19)

The matrix in Eq. 19 is a transformation matrix between the local coordinate system at i and that
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at i+ 1. It is an orthogonal matrix, so its transpose,

Ti+1 =

 cos θi+1 sin θi+1 0
− sin θi+1 cosφi cos θi+1 cosφi − sinφi
sin θi+1 sinφi cos θi+1 sinφi cosφi


is also its inverse. Multiplying both sides of Eq. 19 by Ti+1 gives the coordinates of l̂i+1, b̂i+1, n̂i+1

in the basis of l̂i, b̂i, n̂i:  l̂i
n̂i
b̂i

 = Ti+1

 l̂i+1

n̂i+1

b̂i+1


Or, in general,  l̂i

n̂i
b̂i

 =

(
k∏
j=1

Ti+j

) l̂i+k
n̂i+k
b̂i+k


Note that

(∏k
j=1Ti+j

)
is itself a matrix of inner products:

(
k∏
j=1

Ti+j

)
=

 l̂i · l̂k l̂i · n̂k l̂i · b̂k
n̂i · l̂k n̂i · n̂k n̂i · b̂k
b̂i · l̂k b̂i · n̂k b̂i · b̂k


All of the above analysis is applicable only to chains with fixed conformations. Usually we

will be interested in models in which the chain is free to move within some constraints, as in the
FJC and FRC. In such cases, the matrices Ti must be replaced by their ensemble averages, 〈Ti〉.

Now consider as an example the FRC with the special case that θi = θ ∀ i. All internal beads
are under identical conditions, and Ti is the same for all i. Further, 〈Ti〉 is the same for all i, so
the transformation matrix between i and j is just 〈T〉j−i.

To calculate 〈T〉 for the FRC, we let φ vary freely:

〈T〉 =

∫ 2π

0
dφT∫ 2π

0
dφ

yielding

〈T〉 =

cos θ sin θ 0
0 0 0
0 0 0


and

〈Tk〉 =

cosk θ cosk−1 θ sin θ 0
0 0 0
0 0 0


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6 Wormlike Chain
In many cases, when n� l, it becomes nonsensical to sum over n elements. Porod and Kratky [5]
introduced the idea of taking the continuum limit of a discrete chain by letting n→∞ and l→ 0.
The chain length, L = nl, remains constant, and the chain essentially becomes a smooth curve in
space. The model of Kratky and Porod is often called the “Wormlike Chain”, although it has been
pointed out that unlike a worm, the chain is not extensible.

Consider a FRC. We find that the persistence length is

ξp =
l

cos θ
so

cos θ = 1− l/ξp .
Let’s look at h2, starting from Eqs. 17 and 18:

h2 = nl2 + 2nl2
n−1∑
k=1

cosk θ − 2l2
n−1∑
k=1

k cosk θ

= nl2 + 2nl2
(

cos θ

1− cos θ

)
− 2l2

(
1− cosn θ

(1− cos θ)2

)
= nl2

(
2− l/ξp
l/ξp

)
− 2l2(1− l/ξp)

(
1− (1− l/ξp)n

(l/ξp)2

)
= nlξp(2− l/ξp)− 2ξ2p(1− l/ξp)(1− exp{−nl/ξp}) ,

where we have used the approximation e−nl/ξp ≈ 1 − nl/ξp in the last line. This holds as long as
nl � ξp, which is the case if our chain is long and thin. Defining L ≡ nl and taking the small l
limit,

lim
n→0

h2 = 2Lξp − 2ξ2p(1− e−L/ξp) . (20)

This final result demonstrates that the end-to-end distance can be found without knowledge of
microscopic details of the chain (n,l,θ): Only ξp and the total length are needed. This is an early
hint at universality, or scale invariance, in chains. By defining an overall scaling factor a ≡ L/ξp,

h2 = 2aξ2p − 2ξ2p(1− e−a)

= 2ξ2p(a− 1− e−a)

Even though the end-to-end distance scales with length, it is qualitatively the same for different
chains with the same L : ξp ratio.

6.1 Bending of WLC
To go from a discrete chain model to a continuous chain, consider a chain of equal length links
bent at an angle θi at bead i. If the chain has the tendency to remain straight, we might impose
upon it a harmonic potential that penalizes deflections from θi = 0, such as

Ui =
k

2
θ2i .
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Figure 5: Bending a discrete chain with equally spaced beads. Bending the chain by an angle θ is
equivalent to bending the chain around a radius R ≈ 2l/θ.

This is related to a harmonic spring restoring a linear displacement if we think of the displacement
∆si = Riθi as the length of the arc that connects bead i− 1 to bead i+ 1 when bending the chain
by θi about bead i produces an arc with radius Ri. It’s safe to say that ∆si ≈ 2l, but here we are
trying to avoid using l and θi in favor of the continuous variables R and s. Let us define s as a
continuous variable representing the position along the chain. For the whole chain, the energy of
bending is

U =
k

2

n−1∑
i=1

θ2i

=
k

2

n−1∑
i=1

(
∆s

Ri

)2

=
k∆s

2

n−1∑
i=1

∆s

(
1

Ri

)2

=
K

2

∫ L

0

ds

(
1

R(s)

)2

=
K

2

∫ L

0

ds

∣∣∣∣dtds

∣∣∣∣2 ,
where R(s) is the local curvature at s, t(s) is the tangent vector to the curve at s and K is the
bending modulus. This is engineering here. Materials science stuff. The bending modulus has
units of energy times distance.

7 Self-Avoiding Walk
Another ingredient that has been missing from our models is self-avoidance. To get a sense of the
conformational ensemble adopted by self-avoiding chains, we can follow Flory [1] and construct
some simple arguments based on scaling. We will minimize free energy with respect to the chain’s
size.
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Start by introducing a potential that imposes a penalty for any contacting pairs:

U =
N∑
i=1

∑
j 6=i

H(Rc − |rj − ri|)Uij , (21)

where H(x) is the Heavyside function, equal to 1 if its argument is positive and 1 otherwise.
The potential of Eq. 21 contains one non-zero term for each contacting pair of beads. Assume
that the density of contacts is more or less uniform throughout the volume occupied by the chain
(i.e., ρ = # of contacts/volume is constant). The number of contacts scales with the square of the
number of beads, and the volume scales as a power of the chain radius, depending on dimension.
In two dimensions, the chain volume is approximated by the area of a circle: V2 = 2πR2. In three
dimensions, it is approximated by the volume of a sphere: V3 = 4/3πR3. In d dimensions,

ρ ∼ N2/Rd .

The free energy is given by
F = U − TS ,

where S = kB lnW . We have seen from previous models that the chain parameters tend to follow
Gaussian distributions. Here we will continue this approximation

S = kB lnW

= kB lnP (h2) + const.

≈ kB ln(exp{−h2/N})

Yielding
F = c1N

2/Rd − c2R2/N

Minimizing with respect to R,

0 = ∂F/∂R

= −c1dN2R−d−1 − 2c2RN
−1

R ∼ N
3

d+2 . (22)

Eq. 22 indicates that the end-to-end distance (or Rg) will scale with the chain dimension. In
one dimension, we see that R ∼ N , and the chain is ballistic. In two dimensions, R ∼ N3/4. This
is an exact result. In three dimensions, R ∼ N3/5. Computational results indicate that the scaling
in three dimensions is more accurately R ∼ N0.588, which is remarkably close to the value arrived
at through this simple exercise. The scaling of R ∼ N1/2 for a four-dimensional chain is again
exact. Beyond four dimensions, the self-avoidance causes attraction (R < N1/2), indicating that
this simple scaling is not valid in higher dimensions.
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Appendix
Where did Eq. 11 come from? It is just the simplification of a geometric series that can be derived
easily as follows: We write the series for a higher power, expand it, rearrange terms, cancel, and
viola!

n∑
k=0

k3 =
n∑
k=0

(k + 1)3 − (n+ 1)3

=
n∑
k=0

k3 + 3
n∑
k=0

k2 + 3
n∑
k=0

k +
n∑
k=0

1− (n+ 1)3

3
n∑
k=0

k2 = (n+ 1)3 − 3
n∑
k=0

k −
n∑
k=0

1

= n3 + 3n2 + 3n+ 1− 3n(n+ 1)

2
− n− 1

= n3 +
3n2

2
+
n

2
n∑
k=0

k2 =
n

6
(n+ 1)(2n+ 1)

n−1∑
k=1

k2 =
n

6
(n− 1)(2n− 1)
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